Роль прибора в квантовой механике. Причины появления понятия физической реальности

Автор работы: Пользователь скрыл имя, 05 Сентября 2015 в 16:00, реферат

Краткое описание

Мир элементарных частиц, которым занимается эта наука, живет по своим законам, абсолютно не похожим на законы видимого мира. И даже ученые, изучающие этот мир до сих мор не могут понять эти законы. Они просто их знают и применяют.
Квантовая механика считается «наиболее проверенной и наиболее успешной теорией в истории науки», но консенсуса в понимании «её глубинного смысла» всё ещё нет. В связи с этим появилось множество интерпретаций.

Содержание

Введение стр.3
Предмет квантовой механики стр.4
Специфика изучения микромира по сравнению с изучением мега- и макромира стр.6
Понятие кванта. Корпускулярно – волновой дуализм и принцип дополнительности. Соотношение неопределённостей. Квантовая гипотеза Планка. стр.9
Принципиальное отличие применения вероятностных методов в квантовой механике, классической физике. Понятие детерминизма, индетерминизма и неоднозначного детерминизма. Причинность и случайность. Случайность и закономерность. стр.18
Роль прибора в квантовой механике. Причины появления понятия физической реальности. стр.29
Вывод стр.32
Список используемой литературы стр.33

Вложенные файлы: 1 файл

Контрольная по ЕНКМ.doc

— 133.00 Кб (Скачать файл)

Эйнштейн доказывал, что квантовая механика не удовлетворяет его условию локальности как независимости «реального состояния» одной системы от того, что проделывают с другой, пространственно - отдаленной (и отделенной) системой. Квантовая механика неполна потому, что она не «вскрывает» «реальные физические состояния», которые должны определять физические свойства, проявляющиеся в наблюдениях. Поскольку же наблюдаемые в квантовой физике величины не являются «реальными», нет причин беспокоиться по поводу того, могут они или не могут испытывать «нелокальные влияния»

Эйнштейновское понимание физической реальности не является просто «философским предубеждением». Это верно постольку, поскольку Эйнштейн связывал с реалистической программой физики определенные конкретные (метафизические) представления о мире. К ним относятся: принцип локальности, принцип детерминизма (который имеет двоякое содержание: как принцип близкодействия и как принцип необходимости, исключающий случайность), принцип континуального пространственно-временного описания. Однако все эти конкретные представления о том, как должен быть устроен физический мир, вступают в противоречия или, по крайней мере, не совпадают с представлениями других физических (или метафизических) программ.

Обсуждая реализм и метафизику в квантовой механике, следует искать их основания не только в реальности идей (сверхчувственного) или наблюдений (чувственного) – все это, так сказать, человеческие измерения физической реальности, – но и в самом объективном мире. Из квантовой физики известно, что явления физической реальности зависят от «системы отсчета», определяемой экспериментальной установкой (например, реальность положения и, соответственно, импульса). Можно ли в таком случае утверждать, что такая зависимость доказывает сводимость физической реальности целиком и полностью к «субъективному фактору»? Конечно, нет. Дело в том, что ни при каких условиях экспериментальной деятельности не удается создать прибор, который бы измерял одновременно какие-либо несовместные величины (те же положение и импульс). Было предпринято множество попыток, которые бы по­зволили, хотя бы в принципе, обойти эту квантовую дополнительность. Однако ни одна из них не удалась.

Невозможность создать такой прибор – это объективный фактор физической реальности, который не зависит от деятельности человека. И вместе с тем квантовая реальность имеет человеческие измерения: выбор прибора автоматически определяет теоретические средства, которые необходимо применять для представления экспериментально исследуемого квантового явления.

В качестве сверхчувственной составляющей физической реальности обнаруживается не только идеи и концепции, но и объективную реальность, т.е. бытие, которое определяется не только человеком. Что же касается метафизических концепций физической реальности, то они подлежат экспериментированию. 
ВЫВОД

Несмотря на совершенно новый взгляд на многие природные явления, квантовую механику никак нельзя расценивать как полное опровержение классической физики. Последняя может рассматриваться как предельный случай квантовой механики или как первое и очень грубое приближение к ней. Как подчеркивал Поль Дирак, соответствие между квантовой и классической теориями состоит не только в их предельном согласии. Соответствие заключается прежде всего в том, что математические операции двух теорий во многих случаях подчиняются одним и тем же законам и описываются одной математической структурой. Отличия заключаются лишь в представлении (реализации) этих структур конкретными математическими объектами.

Сегодня физики твердо верят в то, что наш мир един и познаваем. Все разнообразие природных явлений просто обязано описываться в рамках некоего единого универсального подхода. Другое дело, что человек пока еще не до конца сумел понять глубинную сущность законов природы и пределы познаваемости мира.

Однако большинство физиков убеждены в том, что, если идти по пути, указанном квантовой механикой и квантовой теорией поля, будет открыт тот самый свод законов и правил, который и правит нашим удивительно красивым миром.

 

 

Список использованной литературы

1. Горелов А.А. Концепции  современного естествознания: учеб. пособие. – М: Высш. Образование, 2006.

2. Канке В.А. Концепции  современного естествознания: учеб. пособие для студентов вузов. – М.: Логос,2004.

3. Концепции современного  естествознания: учеб. для вузов / под ред. Проф. В.Н. Лавриненко, В.П. Ратникова. – М.: ЮНИТИ – ДАНА,2003.

4. Концепции современного  естествознания / под ред. Проф. С.И. Самыгина.- Ростов н/ Д: « Феникс», 2005.

5. Лихин А.Ф. Концепции  современного естествознания: учеб. – М.: ТК Велби; Изд-во Проспект, 2006

6. Рузавин Г.И. Концепции  современного естествознания: учеб. для вузов. – М.: Культура и спорт. ЮНИТИ,1999

7. Машкин Н.Ф. Квантовая физика. – М.,2001.

8. Мигдал А.Б. Квантовая  физика и Нильс Бор. – М.: Знание.

 

 

 


Информация о работе Роль прибора в квантовой механике. Причины появления понятия физической реальности