Становление современного естествознания

Автор работы: Пользователь скрыл имя, 26 Января 2014 в 13:35, курсовая работа

Краткое описание

Стремление человека к познанию окружающего мира бесконечно. Одним из средств этого познания является естествознание. Оно активно участвует в формировании мировоззрения каждого человека отдельно и общества в целом. К мировоззрению относится также социальная установка на понимание смысла жизни, жизненных идеалов, целей общества и средств их достижения. Мировоззрение - совокупность определенных знаний, комплекс норм и убеждений, проявляющихся в содержании практической деятельности. Определенный мировоззренческий и методологический подход к пониманию мира и объяснению эмпирических фактов выражает стиль мышления.

Содержание

Введение
Основная часть
Заключение
Список используемой литературы

Вложенные файлы: 1 файл

ГОУ ВПО Росздрава.doc

— 1.03 Мб (Скачать файл)

О множественность описания системы, т.е. в силу принципиальной сложности каждой системы ее познание требует построения множества различных моделей, каждая из которых описывает лишь определенный аспект системы. Например, любое животное имеет части тела, которые могут рассматриваться как его элементы; это животное можно рассмотреть как совокупность скелета, нервной, кровеносной, мышечной и дру-

гих систем; наконец, его можно проанализировать как совокупность химических элементов.

Известно большое количество классификаций  систем [22, 30]. Так, системы можно разделить  на материальные и абстрактные. Материальные системы представляют собой целостные совокупности материальных объектов и в свою очередь делятся на системы неорганической природы (физические, химические, геологические и др.) и на живые (начиная с простейших биологических систем через организмы, виды, экосистемы к социальным системам). Абстрактные системы являются продуктом человеческого мышления. Это разного рода понятия, гипотезы, теории, концепции и т.д. По другому основанию можно разделить системы на статические, состояние которых в течение времени не меняется (например, газ в герметичной емкости и находящийся в равновесии), и динамические, состояние которых изменяется (земная кора, организм, биогеоценоз и т.д.). Еще одна классификация делит системы на детерминированные, в которых значение переменных системы в некоторый момент времени позволяет установить состояние системы в любой другой момент, и вероятностные (стохастические), в которых с определенной вероятностью можно предсказать направление изменения переменных. Классификация по характеру взаимоотношения системы и ее среды делит системы на закрытые, которые не ведут обмена со своей средой веществом и энергией; полуоткрытые, обменивающиеся только энергией, и открытые, которые обмениваются и энергией, и веществом.

Эволюция системных  представлений

Многие исследователи полагают, что системность всегда, осознанно  или неосознанно, была методом любой  науки [22, 30]. Считается, что первые представления о системах возникли в античности. В трудах Евклида, Платона, Аристотеля, стоиков разрабатывались идеи системности знания, аксиоматического построения логики, геометрии. Представления системности бытия развивались в концепциях Б. Спинозы и Г.В. Лейбница, в научной систематике XVII-XVIII вв., стремившейся показать естественно-научную системность мира; примером такой

систематики может служить классификация  растений и животных К. Линнея. Принципы системной природы знания разрабатывались в немецкой классической философии. Так, согласно И. Канту, научное знание есть система, в которой целое главенствует над частями, Ф.В. Шеллинг и Г.В.Ф. Гегель трактовали системность познания как важнейшее требование диалектического мышления.

Первым в явной форме вопрос о научном подходе к управлению сложными системами поставил в 1834-1843 гг. М.А. Ампер, который выделил специальную науку об управлении государством и назвал ее кибернетикой. Почти в то же время польский философ Б. Трентовский начал читать курс лекций, изложенный им в книге <Отношение философии к кибернетике как искусству управления народом>. Трентовский ставил целью построение научных основ практической деятельности руководителя (<кибернета>). Он подчеркивал, что управление будет действительно эффективным, если учитывает все важнейшие внешние и внутренние факторы, влияющие на объект управления. Главная сложность в управлении, по Трентовскому, связана с неопределенностью поведения людей. Он указывал, что общество, коллектив и сам человек - это система, единство противоречий, разрешение которых и есть развитие. Поэтому <кибернет> должен уметь, исходя из общего блага, одни противоречия примирять, другие - обострять, направляя развитие событий к нужной цели.

Общество середины XIX в. оказалось не готовым воспринять идеи кибернетики. Лишь в конце XIX в. системная проблематика снова появилась в поле зрения науки. На этот раз внимание было сосредоточено на вопросах структуры и организации систем. В 1890 г. Е.С. Федоров опубликовал свои выводы о том, что может существовать только 230 разных типов кристаллической решетки, хотя любое вещество при определенных условиях может кристаллизоваться. Безусловно, это открытие касалось прежде всего минералогии и кристаллографии, но его более общий смысл и значение отметил еще Федоров. Важно было осознать, что все невообразимое разнообразие природных тел реализуется из ограниченного и небольшого количества исходных форм. Это верно и для лингвистических устных и письменных построений, архитектурных конструк-

ций, строения вещества на атомном  уровне, музыкальных произведений, других систем. Развивая системные  представления, Федоров выявил и  некоторые закономерности развития систем, в частности он установил, что главным средством жизнеспособности и прогресса систем является не их приспособленность, а способность к приспособлению (<жизненная подвижность>), не стройность, а способность к повышению стройности.

Следующий шаг в изучении системности  как самостоятельного предмета связан с именем А.А. Богданова, в 1913-1917 гг. опубликовавшего свою книгу <Всеобщая организационная наука (тектология)>, где он высказал идею о том, что все существующие объекты и процессы имеют определенный уровень организованности [5]. В отличие от естественных наук, изучающих специфические особенности организации конкретных явлений, тектология должна изучать общие закономерности организации для всех уровней организованности, рассматривая все явления как непрерывные процессы организации и дезорганизации, исследовать закономерности развития организации, соотношения устойчивого и изменчивого, значение обратных связей и собственных целей организации (которые могут как содействовать целям высшего уровня организации, так и противоречить им), роль открытых систем. Богданов отмечал, что уровень организации системы тем выше, чем сильнее свойства целого отличаются от простой суммы свойств его частей, и подчеркивал роль моделирования и математики как потенциальных методов решения задач тектологии. Он довел построения тектологии до рассмотрения проблемы кризисов, т.е. таких моментов в истории системы, когда неизбежна скачкообразная перестройка ее структуры.

Тот факт, что тектологией заинтересовались лишь в середине XX в., объясняется  во многом сложностью судьбы Богданова. Будучи по образованию медиком, он всерьез заинтересовался философией и создал собственную философскую концепцию -эмпириомонизм. В.И. Ленин в своей книге <Материализм и эмпириокритицизм> подверг его жесткой критике, после чего Богданов отошел от философии. В 1926 г. он создал первый в мире Институт переливания крови и стал его директором. Там он начал проверять некоторые выводы тектологии на примере кровеносной системы. Рискованные опыты по переливанию

крови он проводил на себе, а один из опытов в 1928 г. закончился его гибелью.

Массовое усвоение системных понятий, осознание системности мира, общества и человеческой деятельности началось в 1948 г., когда американский математик Н. Винер опубликовал книгу <Кибернетика> [9]. Первоначально он определил кибернетику как <науку об управлении и связи в животных и машинах>. Однако уже в следующей своей книге Винер анализирует с позиций кибернетики процессы, происходящие в обществе. Научное сообщество отреагировало на появление кибернетики неоднозначно, полагая, что одна дисциплина не может рассматривать одновременно технические, биологические, экономические и социальные объекты и процессы. Первый международный конгресс по кибернетике (Париж, 1956) принял предложение считать кибернетику не наукой, а <искусством эффективного действия>. В нашей стране кибернетика была встречена особенно настороженно и даже враждебно. Однако по мере ее развития стало ясно, что кибернетика - это самостоятельная наука со своим предметом изучения и своими методами исследования. Так, по А.И. Бергу, кибернетика - это наука об оптимальном управлении сложными динамическими системами; по А.Н. Колмогорову, кибернетика - это наука о системах, воспринимающих, хранящих, перерабатывающих и использующих информацию. Эти определения признаны достаточно общими и полными.

Уже из самих определений ясно, что предметом кибернетики является исследование сложных систем. Более того, хотя при изучении системы требуется учет ее конкретных свойств, для кибернетики в принципе несущественно, какова природа этой системы, т.е. является ли она физической, биологической, экономической, организационной или даже воображаемой. В поле зрения кибернетики попадают объекты любой природы, как только выясняется, что это сложные системы. То, что методы кибернетики могут применяться при исследовании объектов, традиционно изучаемых другими науками, можно трактовать как рассмотрение этих объектов с другой точки зрения. Более того, при этом происходит взаимное обогащение: кибернетика получает возможность развивать и совершенствовать свои модели и методы, а кибернетический подход к системе опреде-

ленной природы позволяет прояснить  некоторые проблемы данной науки, выдвинуть  перед ней новые проблемы, а  главное - содействовать повышению  ее системности.

С кибернетикой Винера связаны такие  достижения в развитии системных  представлений, как типизация моделей систем, выявление особого значения обратных связей в системе и принципа оптимальности в управлении и синтезе систем, осознание информации как всеобщего свойства материи и возможности ее количественного описания, развитие методологии моделирования вообще и в особенности идеи математического эксперимента с помощью компьютера.

Параллельно и в определенной степени  независимо от кибернетики развивается  еще один подход к науке о системах - общая теория систем. В естествознании осознанная системность часто развивается именно на основе этого подхода. Идея построения теории, которая может быть использована в изучении систем любой природы, была выдвинута австрийским биологом Л. фон Берталанфи, опубликовавшим свои соображения в книге <Общая теория систем> в 1968 г. Один из путей реализации этой идеи он видел в том, чтобы отыскивать структурное сходство законов, установленных в различных дисциплинах, и, обобщая их, выводить общесистемные закономерности [4].

Важным достижением Берталанфи является введение понятия открытой системы. В отличие от винеровского подхода, где изучаются внутрисистемные обратные связи, а функционирование систем рассматривается как отклик на внешние воздействия, Берталанфи указал на особое значение обмена системы веществом, энергией и информацией (негэнтропией) с окружающей средой. В открытой системе устанавливается динамическое равновесие, которое может быть направлено в сторону усложнения организации (вопреки второму закону термодинамики, благодаря вводу негэнтропии извне), и функционирование является не просто откликом на изменение внешних условий, а сохранением старого или установлением нового подвижного внутреннего равновесия системы. Берталанфи и его последователи пытались придать общей теории систем формальный характер, но замысел построить общую теорию систем как новую логико-математическую дисциплину до сих пор не реализован полностью. Большую ценность общей теории

систем имеет не столько ее математическое оформление, сколько разработка целей  и задач системных исследований, развитие методологии анализа систем, установление общесистемных закономерностей.

Прогресс в области системности  в исследовании систем связан с бельгийской  школой во главе с И. Пригожиным. Развивая термодинамику неравновесных физических систем, он понял, что обнаруженные им закономерности характерны для систем любой природы [23]. Наряду с переоткрытием уже известных положений (иерархичность уровней организации систем; несводимость друг к другу и невыводимость друг из друга закономерностей разных уровней организации; наличие наряду с детерминированными случайных процессов на каждом Уровне организации и др.) Пригожий предложил новую теорию системодинамики. Согласно его взглядам, материя не является пассивной субстанцией, ей присуща спонтанная активность, вызванная неустойчивостью неравновесных состояний, в которые рано или поздно приходит любая система в результате взаимодействия с окружающей средой. Важно, что в такие переломные моменты (особые точки, или точки бифуркации) принципиально невозможно предсказать, станет ли система менее организованной или более организованной (диссипатив-ной, в терминологии Пригожина). После опубликования в 1978 г. (на русском - в 1980 г.) работы Г. Хакена <Синергетика> направление, занимающееся изучением сложных саморазвивающихся систем, стало называться синергетикой [31]. По Хакену, в рамках синергетики анализируется совместное действие отдельных частей неупорядоченной системы, результатом которого является самоорганизация системы.

Таким образом, наращивание системности знаний - постоянный процесс, происходящий во всех областях человеческой деятельности. Осознанное использование системного подхода к изучению различных объектов и явлений, в том числе природных, в настоящее время развивается в рамках трех основных направлений - кибернетики, общей теории систем и синергетики. Попытки объединить все эти направления предпринимаются системным анализом. Обращаем внимание на специальности ученых, стоявших в основании осознанной системности: Б. Трентов-ский - философ, Е.С. Федоров - геолог, А.А. Богданов - медик,

Н. Винер - математик, Л. фон Берталанфи - биолог, И. Пригожий - физик; уже это  говорит о всеобщности проблем  системности.

4.2. Модели и моделирование систем

Понятие модели и моделирования

Одна из характерных особенностей современного естествознания - его модельный характер, т.е. все объекты, явления и процессы описываются с помощью моделей. В определенном смысле расширение границ естествознания можно представить как построение более подходящих и совершенных моделей природы. Модельный характер естествознания связан и с тем, что значимость того или иного факта можно определить, лишь опираясь на какую-либо модель.

Понятие модели стало пониматься широко лишь в XX в. Вначале модель стала  осознаваться как нечто универсальное в научных дисциплинах информационного, кибернетического, системного направлений, а позднее эта идея распространилась на всю науку. При этом понятие абстрактной модели не сводится к математическим моделям, а относится к любым знаниям и представлениям о мире [18, 20, 22, 30, 33].

Под моделью будем  понимать вещественный или мысленно представляемый аналог определенного  оригинала, подобный ему в существенных для конкретного исследования чертах. По сути модель является неким <заместителем> оригинала в познании и практике. Основные функции моделей - фиксация знаний и получение информации. Они служат для хранения и расширения знания или, как иногда говорят, информации об оригинале, конструирования оригинала, преобразования и управления им.

Моделированием называется исследование каких-либо явлений, процессов или систем путем построения и изучения их моделей, а также использование моделей для определения или уточнения характеристик и рационализации способов построения вновь конструируемых объектов.

Моделирование - одна из основных категорий теории познания. На идее моделирования по существу базируется любой метод научного исследования.

Моделирование является важным этапом целенаправленной деятельности, так  как она ориентирована на реализацию образа желаемого будущего, т.е. модели состояния. Например, земледелец возделывает почву для того, чтобы произвести продукты питания; студент учится для того, чтобы приобрести профессию; ученые изучают природу для того, чтобы получить знания об окружающем мире. Любая деятельность осуществляется по определенному плану (алгоритму), который является образом будущей деятельности, т.е. ее моделью. При этом приходится оценивать текущий результат предыдущих действий и выбирать следующий шаг из многих возможных, в связи с чем необходимо сравнивать последствия всех возможных шагов, не выполняя их реально, другими словами, изучать их на модели. Кроме того, сама модель является целевым отображением, причем не самого по себе объекта-оригинала, а того, что в нем нас интересует, т.е. то, что соответствует поставленной цели. Поскольку модель - это целевое отображение, можно говорить о множественности моделей одного и того же объекта: для разных целей, как правило, требуются разные модели.

Информация о работе Становление современного естествознания