Автор работы: Пользователь скрыл имя, 16 Декабря 2013 в 05:35, реферат
Любая мысль в процессе рассуждения должна иметь определенное, устойчивое содержание. Это коренное свойство мышления — его определенность — выражает закон тождества: всякая мысль в процессе рассуждения должна быть тождественна самой себе (а есть а, или а = а, где под а понимается любая мысль).
С помощью символа импликации —> (логическая связка «Если..., то...») закон тождества выражается формулой: р —> р («Если р, то р»).
Из закона тождества следует: нельзя отождествлять различные мысли, нельзя тождественные мысли принимать за нетождественные. Нарушение этого требования в процессе рассуждения нередко бывает следствием различного выражения одной и той же мысли в языке.
Обоснованность — важнейшее свойство логического мышления. Во всех случаях, когда мы утверждаем что-то, убеждаем в чем-либо других, мы должны доказывать наши суждения, приводить достаточные основания, подтверждающие истинность наших мыслей. В этом состоит коренное отличие научного мышления от мышления ненаучного, которое характеризуется бездоказательностью, способностью принимать на веру различные положения и догмы.
Закон достаточного основания не совместим с различными предрассудками и суевериями. Например, существуют нелепые приметы: разбить зеркало — к несчастью, рассыпать соль — к ссоре и т. д., хотя между разбитым зеркалом и несчастьем, рассыпанной солью и ссорой нет причинной связи. Логика враг суеверий и предрассудков. Она! требует обоснованности суждений и не совместима поэтому с утверждениями, которые строятся по схеме «после этого — значит, по причине этого». Эта логическая ошибка возникает в случаях, когда причинная связь смешивается с простой последовательностью во времени, когда предшествующее явление принимается за причину последующего.
Закон достаточного основания имеет важное теоретическое и практическое значение. Фиксируя внимание на суждениях, обосновывающих истинность выдвинутых положений, он помогает отделить истинное от ложного и прийти к верному выводу.
Значение закона достаточного основания в юридической практике состоит, в частности, в следующем. Всякий вывод суда или следствия должен быть обоснован. В материалах по поводу какого-либо дела, содержащих, например, утверждение о виновности обвиняемого, должны быть данные, являющиеся достаточным основанием обвинения. В противном случае обвинение не может быть признано правильным. Вынесение мотивированного приговора или решения суда во всех без исключения случаях является важнейшим принципом процессуального права.
Закон исключенного третьего
Впервые этот закон сформулировал Аристотель, хотя он был известен задолго до него и в логических учениях Древнего Востока, и в школах риторики Античной Греции.
Начиная с Аристотеля существует традиция давать закону исключенного третьего разные интерпретации, наиболее важной из которых является, несомненно, логическая. Она требует, чтобы из двух противоречащих суждений одно было истинным, а другое – ложным. Другое истолкование, называемое онтологическим, переносит логический закон на реальный мир, т.е. постулирует например, что свойство должно либо принадлежать, либо не принадлежать предмету, или же объект либо существует в мире, либо не существует. Ясно, однако, что этот закон, как и другие логические законы, абстрагируется от всей сложности и противоречивости реального мира и поэтому не может быть полностью, без соответствующих уточнений перенесен на объективный мир, его свойства и отношения. Точно так же методологическое требование, чтобы в процессе исследования было установлено, является ли объект (система суждений, гипотез или теория) истинным либо ложным, представляет собой перенос логического принципа на область учения о методах познания и критериев их истинности. Иногда даже под закон исключенного третьего подводится психологическая база, но подобные истолкования закона не вытекают из самого закона, который является логически необходимой, общезначимой истиной, относящейся непосредственно к двум контрадикторным суждениям. Закон просто требует, чтобы из таких суждений одно было истинным, а другое ложным; никакой третьей возможности не допускается. Отсюда легко находится формула для символического выражения закона. Суждения (или высказывания) в ней должны отрицать друг друга, и кроме того, они должны быть связаны строгой (сильной) дизъюнкцией, словесно выражаемой грамматическими союзами "либо, либо", т.е. если мы обозначим одно суждение через Р, а его отрицание – ¬ Р, тогда формула будет такой:
Вопрос о применении закона исключенного третьего еще со времени Аристотеля вызывал споры. Сам философ считал его применимым лишь для характеристики настоящих и прошлых событий, так как человек может определить истинность и ложность только таких событий. Вопрос об истинности будущих событий остается неопределенным. По-видимому, Аристотель и его предшественники вывели этот закон из наблюдения свойств конечных множеств событий. Когда математики обратились к исследованию свойств бесконечных множеств, то вынуждены были признать, что если бесконечность рассматривается как неограниченный процесс построения каких-либо объектов, например, чисел натурального ряда 1, 2, 3..., то к ним принцип исключенного третьего оказывается неприменимым. В самом деле, суждение "В данном бесконечном ряду не существует объекта со свойством Р, т.е. Р(х)" было бы истинным только тогда, когда существовала бы возможность проверить бесконечный ряд целиком. Но именно подобным образом рассуждают сторонники классической (или теоретико-множественной) математики, когда рассматривают бесконечное множество по аналогии с конечными множествами, т.е. как завершенное, актуальное множество. С такой точки зрения натуральный ряд чисел представляется как уже заданный, готовый, а не возникающий в процессе прибавления единицы к предшествующему числу.
Для чего понадобилась эта идеализация? Оказывается для того, чтобы сохранить все законы аристотелевской (классической) логики и для бесконечных множеств. Однако подобный упрощенный подход привел в дальнейшем к парадоксам теории множеств, в связи с чем противники классиков – интуиционисты и конструктивисты – отказались от применения закона исключенного третьего. На этой основе возникла особая – конструктивная логика, отличающаяся от классической тем, что в ней не используется закон исключенного третьего.
Трудности с применением данного закона возникли также в квантовой механике, изучающей законы движения микрочастиц материи, где потребовалось ввести закон исключенного четвертого.
Приведенные примеры из современной науки ясно показывают, что прежде чем применить закон исключенного третьего к конкретным областям научного знания или даже к повседневной практике, необходимо убедиться, подходит ли он для данного случая, не вносит ли путаницу и не приводит ли к ошибочным выводам.
Следовательно, важно разобраться, как соотносятся между собой законы противоречия и исключенного третьего, какую роль они играют в логическом анализе рассуждений в речи или тексте. Заметим, что принцип противоречия имеет более общий характер, ибо устанавливает, что два противоречащих суждения не могут быть одновременно истинными, но не указывает что одно из них должно быть истинным, а другое ложным. Поэтому он применяется и к контрарным, и контрадикторным суждениям. Как известно, общеутвердительные и общеотрицательные суждения являются контрарными, т.е. допускают существование суждений, занимающих промежуточное положение между ними. Например, суждения "все экстрасенсы приносят пользу людям" и "ни один экстрасенс не приносит пользу" предполагают существование частноутвердительного суждения "некоторые экстрасенсы приносят пользу людям". Итак, когда мы имеем дело с противоречием, то в результате его анализа всегда можно выделить некоторое суждение, характеризующее промежуточное состояние, степень свойства, признака и т.п. Другими словами, члены такого противоречия не только отрицают друг друга, но и предполагают существование третьей возможности.
Контрадикторные суждения исключают третью возможность: они допускают выбор только между двумя возможностями. Нередко подобные суждения представляются в виде определенной альтернативы. Альтернатива требует выбора между двумя контрадикторными суждениями: либо вы считаете истиной одно мнение (гипотезу или утверждение) либо другое, и ничего, кроме этих альтернатив не допускается. Такой подход характерен для постановки проблем в научном познании или решения вопросов в практической деятельности. В этих случаях рассуждают по принципу "либо – либо" и тем самым заставляют исследовать или решать либо одну проблему или задачу, либо другую. Но отсюда, конечно, отнюдь не следует, что с самого начала исследования или решения выбирается истинное направление или решение, а просто-напросто постулируется возможность выбора между двумя возможностями. Выбор может оказаться неверным и решение проблемы или задачи отрицательным, но такой отрицательный результат оказывается небесполезными, ибо в соответствии с требованием закона исключенного третьего правильное решение следует искать путем реализации второй возможности.
Косвенные доказательства, основанные на применении принципа исключенного третьего, как мы видели в предыдущих главах, также строятся по принципу альтернативы. Предполагая тезис ложным, рассуждая от противного, выводят из него следствия, которые противоречат истинным или доказанным утверждениям. Поскольку из двух взаимоисключающих суждений только одно должно быть истинным, то ложность предполагаемого тезиса отрицается и тем самым доказывается его истинность.
Таким образом, если принцип непротиворечия требует анализа возникшего противоречия и его устранения, то принцип исключенного третьего идет дальше, ибо устраняет возможность выбора какого-то третьего суждения, кроме тех суждений, которые являются членами данной альтернативы. Именно поэтому последний закон называют также принципом альтернативы, что отображается в логической структуре самого закона. Если в законе непротиворечия отрицается конъюнкция противоречащих суждений, то в законе исключенного третьего отвергается существование третьей возможности наряду с двумя альтернативными:
¬ (Р Ù ¬ Р)
Закон исключительного третьего, как и закон противоречия, устанавливает связь между противоречащими друг другу высказываниями. И опять-таки идея, выражаемая им, представляется поначалу простой и очевидной: из двух противоречащих высказываний одно является истинным.
В использовавшейся уже полусимволической форме: А или не-А, т.е. истинно высказывание А или истинно его отрицание, высказывание не-А.
Конкретными приложениями этого закона являются, к примеру, высказывания: «Аристотель умер в 322 г. до н.э. или он не умер в этом году», «Личинки мух имеют голову или не имеют ее».
Истинность отрицания равнозначна ложности утверждения. В силу этого закон исключенного третьего можно передать и так: каждое высказывание является истинным или ложным.
Само название закона выражает его смысл: дело обстоит так, как описывается в рассматриваемом высказывании, иди так, как говорит его отрицание, и никакой третьей возможности нет.
Некоторые применения закона
Рассказывают историю про одного владельца собаки, который очень гордился воспитанием своего любимца. На его команду: «Эй! Приди или не приходи!» – собака всегда либо приходила либо нет. Так что команда в любом случае оказывалась выполненной.
Человек говорит прозой или не говорит прозой, кто-то рыдает или не рыдает, собака выполняет команду или не выполняет и т.п. – других вариантов не существует. Мы можем не знать, противоречива некоторая конкретная теория или нет, но на основе закона исключенного третьего еще до начала исследования мы вправе заявить: она или непротиворечива, или противоречива.
Этот закон с иронией обыгрывается в художественной литературе. Причина иронии понятна: сказать «Нечто или есть, или его нет», значит, ровным счетом ничего не сказать. И смешно, если кто-то этого не знает.
В комедии Мольера «Мещанин во дворянстве» есть такой диалог:
Г-н Журден. ...А теперь я должен открыть вам секрет. Я влюблен в одну великосветскую даму, и мне хотелось бы, чтобы вы помогли написать ей записочку, которую я собираюсь уронить к ее ногам.
Учитель философии. Конечно, вы хотите написать ей стихи?
Г-н Журден. Нет, нет, только не стихи.
Учитель философии. Вы предпочитаете прозу?
Г-н Ж у рд е н. Нет, я не хочу ни прозы, ни стихов.
Учитель философии. Так нельзя: или то, или. другое.
Г-н Журден. Почему?
Учитель философии. По той причине, сударь, что мы можем излагать свои мысли не иначе, как прозой или стихами.
Г-н Журден. Не иначе, как прозой или стихами?
Учитель философии. Не иначе, сударь. Все, что не проза, то стихи, а что не стихи, то проза.
В известной сказке Л.Кэрролла «Алиса в Зазеркалье» Белый Рыцарь намерен спеть Алисе «очень, очень красивую песню».
– Когда я ее пою, все рыдают... или... С
– Или что? – спросила Алиса, не понимая, почему Рыцарь вдруг остановился.
– Или... не рыдают...
В сказке А.Н.Толстого «Золотой ключик, или Приключения Буратино» народный лекарь Богомол заключает после осмотра Буратино:
– Одно из двух: или пациент жив или он умер. Если он жив – он останется жив или не останется жив. Если он мертв – его можно оживить или нельзя оживить.
Сомнения в универсальности закона
Оба закона – и закон противоречия и закон исключенного третьего – были известны еще до Аристотеля. Он первым дал, однако, их ясные формулировки, подчеркнул важность этих законов для понимания мышления и бытия и вместе с тем выразил определенные сомнения в универсальной приложимости второго из них.
«...Невозможно, – писал Аристотель, – чтобы одно и то же в одно и то же время было и не было присуще одному и тому же в одном и том же отношении (и все другое, что мы могли бы еще уточнить, пусть будет уточнено во избежание словесных затруднений) – это, конечно, самое достоверное из всех начал». Такова формулировка закона противоречия и одновременно предупреждение о необходимости сохранять одну и ту же точку зрения в высказывании и его отрицании «во избежание словесных затруднений». Здесь же Аристотель полемизирует с теми, кто сомневается в справедливости данного закона: «...не может кто бы то ни было считать одно и то же существующим и несуществующим, как это, по мнению некоторых, утверждает Гераклит».
О законе исключенного третьего: «...не может быть ничего промежуточного между двумя членами противоречия, а относительно чего-то одного необходимо что бы то ни было одно либо утверждать, либо отрицать».
От Аристотеля идет также живущая и в наши дни традиция давать закону противоречия, закону исключенного третьего, да и другим логическим законам, три разные интерпретации.
В одном случае закон противоречия истолковывается как принцип логики, говорящей о высказываниях и их истинности: из двух противоречащих друг другу высказываний только одно может быть истинным.
В другом случае этот же закон понимается как утверждение об устройстве самого мира: не может быть так, чтобы что-то одновременно существовало и не существовало.
В третьем случае этот закон звучит уже как истина психологии, касающаяся своеобразия нашего мышления: не удается так размышлять о какой-то вещи, чтобы она оказывалась такой и вместе с тем не такой.