Автор работы: Пользователь скрыл имя, 30 Апреля 2013 в 13:21, реферат
Одной из важных отраслей современной сварочной техники является наплавка – нанесение расплавленного металла на поверхность изделия, нагретую до оплавления или до температуры надежного смачивания жидким наплавленным металлом. Наплавленный металл связан с основным металлом весьма прочно и образует одно целое с изделием. Толщина слоя от 0,5 до 10 мм и более. Это один из наиболее распространенных способов повышения износостойкости и восстановления деталей и конструкций
1.ИНДУКЦИОННАЯ НАПЛАВКА
1.1.ПРОЦЕСС ИНДУКЦИОННОЙ НАПЛАВКИ
Одной из важных отраслей современной сварочной техники является наплавка – нанесение расплавленного металла на поверхность изделия, нагретую до оплавления или до температуры надежного смачивания жидким наплавленным металлом. Наплавленный металл связан с основным металлом весьма прочно и образует одно целое с изделием. Толщина слоя от 0,5 до 10 мм и более. Это один из наиболее распространенных способов повышения износостойкости и восстановления деталей и конструкций.
Наплавка позволяет создавать биметаллические изделия, у которых высокая прочность и низкая стоимость сочетаются с большой долговечностью в условиях эксплуатации. Многократное повторное восстановление изношенных деталей во много раз уменьшает расход металла для изготовления запасных частей оборудования.
Путем наплавки на рабочей поверхности
изделия получаем сплав, обладающий
комплексом свойств - износостойкостью,
кислотоупорностью, жаростойкостью и
т.д. Масса наплавленного металла
не превышает нескольких процентов
от массы изделия. При ремонте
восстанавливаются
К отличительным особенностям
индукционного нагрева относится бесконтактный
способ передачи энергии в нагреваемое
изделие посредством электромагнитного
поля. В любом электропроводном материале,
помещенном в переменное электромагнитное
поле, индуктируются вихревые токи. В сравнении
с кондуктивным индукционный (бесконтактный)
подвод энергии упрощает и расширяет возможности
нагрева геометрически сложных поверхностей
деталей.
Устройством,
передающим энергию высокой частоты в
наплавляемый металл, является индуктор.
Он представляет собой виток или спираль
из нескольких витков медной трубки, при
работе охлаждаемых водой, по которым
протекает ток высокой частоты. При этом
вокруг витков создается переменное магнитное
поле. Подготовленные к наплавке детали
располагают 'В зоне действия индуктора,
где они пронизываются переменным магнитным
полем. Переменное электромагнитное поле
индуктирует электродвижущую (э. д. с.)
силу, под действием которой в металле
возникают токи, нагревающие наплавляемую
поверхность до заданной температуры.
Плотность индуктируемых в каждом элементарном
объеме металла токов может изменяться
по различным законам в зависимости от
формы, геометрических размеров нагреваемой
детали, удельного сопротивления и магнитной
проницаемости материала и пр.
Мгновенное значение
индуктированной электродвижущей силы
в вольтах определяют на основании известного
закона электромагнитной индукции, согласно
которому э. д. с. равна скорости убывания
магнитного потока, т. е.
e= -dФ/dτ
где Ф— магнитный поток, Гц; τ — время
изменения магнитного потока.
Для случая изменения магнитного потока,
пронизывающего витки потокосцепленного
контура, близкого к синусоиде, действующее
значение
E= 4.44fnФ
где f— частота индуктированного
тока, Гц; τ — число витков контура.
Выходящая из непроводящей среды, например
воздуха, электромагнитная волна внутри
металла распространяется перпендикулярно
его поверхности и затухает по мере удаления
от нее.
Поверхностный эффект. Вихревые токи
по сечению проводника распределяются
неравномерно, их плотность уменьшается
по мере удаления от поверхности к центру.
Это связано с затуханием электромагнитной
волны, распространяемой внутри металла.
Такое явление получило название поверхностного
эффекта.
Для количественной оценки поверхностного
эффекта в теории индукционного нагрева
используют Д — глубину проникновения
тока в материал. При прочих равных условиях
поверхностный эффект будет тем сильнее,
чем больше размеры проводника и выше
частота тока. Глубина проникновения тока
представляет собой расстояние, на котором
амплитуды напряженностей электрического
и магнитных полей плоских электромагнитных
волн уменьшаются в 2,718 раз, а фаза волны
изменяется на 1 радиан, т. е. на 57°.
Глубина проникновения тока
Δ=5030
где ρ — удельное электрическое сопротивление
проводника; μ — относительная магнитная
проницаемость; f — частота тока.
В практических расчетах часто используют
эмпирическую формулу для определения
глубины проникновения тока в материал
нагреваемого изделия при определенной
температуре:
Δ=k/f
где k— эмпирический
коэффициент (табл. 8.2).
В
зависимости от размеров детали и частоты
тока при индуктивном нагреве различают
"массивные" и "прозрачные" тела
для электромагнитного поля. Если диаметр
проводника, в котором индуктированы вихревые
токи, в восемь и более раз больше Д, то
такая частота считается высокой или тело
"массивным". Если глубина проникновения
тока Д больше, чем диаметр проводника,
то такое тело называют "прозрачным"
для электромагнитного поля данной частоты.
В "массивном" теле в пределах слоя
металла толщиной Л выделяется почти вся
мощность (86,5 % энергии, подводимой в тело).
Влияние нагрева
на электрические свойства материала. К основным электрофизическим
свойствам материалов относится магнитная
проницаемость (μ) и удельное электрическое
сопротивление (ρ). Данные параметры оказывают
основное влияние на глубину проникновения
тока и передаваемую в изделие мощность.В
зависимости от относительной магнитной
проницаемости нагреваемые материалы
разделяют на парамагнетики, диамагнетики
и ферромагнетики. У первых двух близка
к единице, а у ферромагнетиков она значительно
превышает единицу. К ферромагнетикам
относятся железоуглеродистые сплавы,
никель, кобальт. Магнитная проницаемость
у ферромагнетиков зависит от напряженности
магнитного поля, температуры и ряда других
факторов. Влияние температуры нагрева
на изменение магнитной проницаемости
в области достаточно сильных магнитных
полей представлено на рис. 8.4. Скачкообразное
уменьшение магнитной проницаемости при
температуре 1053 К связано с потерей магнитных
свойств стали. Температура, при которой
магнитная проницаемость падает до единицы,
называется точкой Кюри. Для различных
материалов температура магнитных превращений
различна. Например, для углеродистых
сталей точка Кюри лежит в интервале температур
1033—1056 К, кобальта — 1413 К и никеля .— 633
К.При нагреве помимо изменения магнитной
проницаемости происходит увеличение
электрического сопротивления металлов.
Известно, что удельное сопротивление
.сталей возрастает монотонно во .всем,
интервале температур до точки Кюри, а
затем его увеличение замедляется. При
температурах нагрева свыше 1237 К удельное
сопротивление различных сталей практически
одинаково и равно 1,2 — 1,3 Ом-мм2/м. В
процессе индукционного нагрева в связи
с изменением магнитной проницаемости
и удельного сопротивления при достижении
точки Кюри происходит изменение глубины
проникновения тока пропорционально
Различают глубину проникновения тока
Δx, в холодный и Δг горячий
металл. Глубина проникновения тока Δг,
в нагретую выше точки Кюри сталь увеличивается
в 8 — 10 раз. Глубина проникновения тока
в горячий металл
Значения глубин проникновения
тока в холодную сталь (Δx) и нагретую
выше точки Кюри (Δг), а также для
других металлов приведены в табл. 8.3.
Эффект близости. Природа эффекта близости и
поверхностного эффекта одна и та же. Только
в данном случае концентрация тока в определенных
местах поверхности проводника рассматривается
как результат суммарного взаимодействия
собственного поля и электромагнитных
полей всех проводников с током в системе.
Картина распределения тока и магнитного
поля в проводниках прямоугольного сечения
для случая одинаково и встречно направленных
токов показана на рис. 8.5. Из рис. 8.5 видно,
что наибольшая плотность тока при одинаковом
его направлении наблюдается на наружных
поверхностях проводников, а п
ри встречном направлении тока — на внутренних
поверхностях. Исходя из названия эффект
близости проявляется только в том случае,
если проводники с током сближаются на
малые расстояния. Перераспределение
плотности тока будет выражено тем сильнее,
чем меньше расстояния между проводниками
и чем выше частота.Эффект близости позволяет
разработать такой индуктор, который может
обеспечить требуемую локальность нагрева
заданной поверхности изделия.
Кольцевой эффект. Другой разновидностью поверхностного
эффекта является кольцевой эффект, который
заключается в том, что у свернутого в
кольцо или спираль проводника наибольшая
плотность тока наблюдается на его внутренней
поверхности. Кольцевой эффект проявляется
тем сильнее, чем больше высота проводника
по отношению к диаметру кольца. Наблюдается
ярко выраженная симметрия магнитного
поля индуктора. Внутри индуктора (рис.
8.6) магнитное поле значительно больше,
чем снаружи. Кольцевой эффект является
полезным при нагреве у деталей наружной
цилиндрической поверхности. Вместе с
тем он затрудняет или делает вообще невозможным
нагрев до заданной температуры внутренних
цилиндрических поверхностей. Это связано
с резким снижением напряженности электромагнитного
поля у нагреваемой поверхности.
Энергоемкость процесса
наплавки. Энергоемкость характеризуется
затратами энергии на единицу массы наплавленного
металла. Эти затраты складываются из
количества энергии,
Таблица 8.3. Глубина
проникновения тока в холодный и нагретый/материал
1.2.ВЫСОКОЧАСТОТНЫЕ
УСТАНОВКИ
Условия для индукционного
нагрева состоят обычно из одинаковых
элементов, которые связаны между собой
общей электрической схемой. В нее входят:генератор
высокой частоты (машинный, ламповый, ионный,
тиристорный);
индуктор тока высокой частоты (ТВЧ) одновитковый
или многовитковый; к
онденсаторная батарея, компенсирующая
низкий коэффициент мощности индуктора;
закалочный трансформатор; контактор
для подключения и отключения тока нагрузки
;линии передач тока высокой частоты от
источника питания до индуктора ;система
водяного охлаждения: высокочастотные
измерительные приборы (амперметр, вольтметр,
ваттметр, фазометр); измерительные трансформаторы
напряжения и тока.
В зависимости от функционального
назначения установки дополнительно укомплектовывают
плавильной печью, станком для закалки,
кузнечным нагревателем, аппаратурой
для поддержания и контроля режима нагрева.
В ряде случаев для нагрева используют
промышленную частоту, и тогда генератор
отсутствует. При питании однофазной нагрузкой
вместо генератора устанавливают устройство,
преобразующее трехфазную систему в.однофазную,
которое обеспечивает симметричную нагрузку
сети. Нагреваемая деталь помещается внутри
индикатора или около него. Переменное
магнитное поле индуктора вызывает появление
индуктированного тока в детали, в результате
чего происходит ее нагрев.
Все схемы установок подчинены
условиям согласования (настройки) параметров
нагрузки с параметрами источника
тока высокой частоты (генераторы) с
тем, чтобы обеспечить передачу индикатором
необходимой мощности в нагреваемую деталь
в пределах допустимых превышений номинальных
данных генератора в процессе всего цикла
нагрева.У нас в стране наиболее широкое
распространение получили машинные преобразователи,
статические преобразователи частоты
и ламповые генераторы.
Высокочастотный
машинный преобразователь. Преобразовате
возможность включения нескольких преобразователей
на параллельную работу;
сравнительно низкая стоимость.К недостаткам
машинных преобразователей относится
снижение их к. п. д. при неполной загрузке.
Кроме того, такие преобразователи создают
повышенный шум, имеют достаточно сложную
систему водоохлаждения и смазки.
Статические преобразователи
частоты. Преобразователи используют
в качестве источников питания электротермических
установок токами повышенной частоты
в диапазоне 200 — 1000 Гц. Преобразование
частоты в таких устройствах осуществляется
в результате коммутации постоянного
тока управляемыми вентилями. Схемы преобразования
частоты могут быть осуществлены как на
полностью управляемых вентилях, так и
на вентилях, имеющих полууправляемую
характеристику (тиратроны, экситроны,
тиристоры и т. п.). Полная схема преобразователя
частоты включает источник постоянного
тока (выпрямитель), звено преобразования
(инвертор), цепи контроля и управления.Положительными
характеристиками статистических преобразователей
(табл. 8.4) частоты являются, в сравнении
с электромашинными, высокий электрический
к. п. д., обусловленный незначительным
падением напряжения на вентилях, отсутствие
больших вращающихся масс и малые статистические
весовые нагрузки.
Ламповые генераторы. Генератор
Ламповые генераторы мощностью
более 10 кВт (табл. 8.5) выполнены по двухконтурной
схеме, что позволяет лучше
Таблица 8.4. Технические
характеристики статических преобразователей
частоты
Все двери блоков генераторов, в которых
напряжение свыше 1000 В, имеют электромеханическую
блокировку. При правильной очередности
открывания дверей прежде всего снимается
питающее напряжение. Узлы установки экранизированы
алюминиевыми листами.
1.3.ИНДУКТОРЫ ДЛЯ НАГРЕВА
Передача энергии от источника
питания токов высокой частоты
в нагреваемое изделие при наплавке осуществляется
при помощи многовитковой или одновитковой
катушки, называемой индуктором. Форма
и размеры индуктора зависят от способа
нагрева, размеров и конструкции нагреваемой
поверхности, подводимой мощности, частоты
тока, объемов производства, степени механизации
и т. д. Индуктор является основным элементом
любой высокочастотной нагревательной
установки. В большинстве случаев достоинства
и недостатки технологических устройств,
в которых используется индукционный
нагрев, могут быть поставлены в прямую
связь с особенностями конструкции индуктора.
Индукционную наплавку наиболее эффективно
используют в условиях крупносерийного
и массового производства. Современное
поточное массовое производство, как правило,
высокоавтоматизированное. Поэтому при
разработке конструкции необходимо анализировать
также схемы автоматизации загрузки детали
в индуктор и возможности передачи ее
на последующие операции механической
обработки.
Таблица 8.5. Основные
технические данные ламповых высокочастотных
установок
Чтобы увеличить электрический
к. п. д., а также cosφ, зазор между
индуктирующим приводом и нагреваемой
поверхностью должен быть минимальным.
Однако чем меньше этот зазор, тем с большей
точностью необходимо изготавливать детали
индуктора.зазор, мы всегда повышаем к.
п. д., но возможно значительное удорожание
изготовления и эксплуатации устройства.
При малых зазорах, повышается процент
брака из-за случайных прикосновений детали
к индуктору и возникающего при этом пробоя
между индуктором и деталью. Зазор, который
можно допустить без существенного уменьшения
к. п. д., пропорционален ширине индуктирующего
провода. Практически для деталей среднего
машиностроения (автомобили, тракторы
и пр.) зазоры менее 2 — З мм следует выбирать
только в отдельных обоснованных случаях.
При этом следует учитывать точность изготовления
наплавляемой поверхности и поверхностей,
на которые базируются заготовки, а также
допуски на их взаимное расположение.
Обычно зазор должен быть в 4 — 5 раз больше
суммарной ошибки, которая может появиться
из-за случайного совпадения отклонений
размеров и расположения нагреваемой
и базовых поверхностей.
В последние годы разработаны
индукторы с электроизоляционным покрытием
рабочих поверхностей окисью алюминия.
Благодаря этому устраняются случайные
замыкания детали и индуктора, уменьшается
зазор между ними и повышается к. п. д. и,
как следствие, сокращается время наплавки
на 10 — 12 %.
В
се токоведущие элементы должны изготавливаться
из меди М1 — материала очень хорошей электропроводности.
Известно, что ток в индукторе протекает
только в поверхностном слое токоведущих
частей, толщина которого равна глубине
проникновения тока данной частоты в медь.
Поэтому с точки зрения экономии цветных
металлов только эти элементы можно изготавливать
из чистой электролитической меди. Остальные
элементы могут быть изготовлены из любого
немагнитного материала. Однако пока не
разработаны дешевые способыпрочного
и плотного соединения меди с алюминием
или текстолитом. Поэтому конструкции
индукторов, изготовленных из различных
материалов, используются еще редко.
Расчет параметров индуктора для наплавки
представляет значительные трудности.
Большинство наплавочных индукторов,
особенно работающих на радиочастотах,
изготовляют на основании опыта с последующей
их доводкой после экспериментальной
проверки. Разнообразие геометрических
форм наплавляемых поверхностей деталей
требует соответствующего числа различных
по конфигурации индукторов.По форме индукторы
разделяются на кольцевые и петлевые.
По конструкции — на разъемные и неразъемные.
По числу витков — на одновитковые и многовитковые.
По направленности нагрева — для нагрева
наружных (цилиндрических, плоских и пр.)
(рис. 8.7) и внутренних (рис. 8.8) поверхностей.