Автор работы: Пользователь скрыл имя, 20 Июня 2012 в 18:48, реферат
Цель исследования:
Рассмотреть основные положения сварных работ электронно-лучевым способом.
Объект исследования:
Качество сварных соединений электронно-лучевым способом
Изучение процесса сварки металлов и с
Введение……………………………………………………………………… 2
Глава 1. Электронно-лучевая сварка – как один из методов соединения металлов и их сплавов
1.1 Понятие лучевой сварки и отличие ее от других видов…………………………………………………………………………. 3
1.2 Технологические условия для возможности выполнения лучевой сварки…………………………………………………………………………11
1.3 Конструкции с эффективным применением лучевой сварки………………………………………………………………………....13
Глава 2. Расчет на прочность при разработке сварных конструкций электронно-лучевым способом
2.1 Экономические аспекты применения лучевой сварки………………..15
2.2 Методы расчета сварных соединений на прочность………………....21
Заключение…………………………………………………………………...31
Список литературы………………………………………………………….
Содержание
Введение…………………………………………………………
Глава 1. Электронно-лучевая сварка – как один из методов соединения металлов и их сплавов
Глава 2. Расчет на прочность при разработке сварных конструкций электронно-лучевым способом
2.1 Экономические аспекты применения лучевой сварки………………..15
2.2 Методы расчета сварных
соединений на прочность……………….
Заключение……………………………………………………
Список литературы…………………………………
Введение
В течение последних 30 лет сформировалась электронно- и ионно- лучевая технология обработки материалов. В этой новой области электронные и ионные пучки непосредственно используются для осуществления технологических процессов. Возможные применения электронно- и ионно- лучевой технологии простираются от получения субмикроскопических структур в микроэлектронике до выплавки крупных слитков в металлургии. Общим для всех этих установок является использование электронных и ионных пучков.
Приблизительно в 1965 году
электронно-лучевая плавка, сварка,
напыление и обработка
Цель исследования:
Рассмотреть основные положения
сварных работ электронно-
Объект исследования:
Качество сварных соединений электронно-лучевым способом
Изучение процесса сварки металлов и сравнение методов их проведения
Задачи:
- Проанализировать существующие виды сварки
- Определить требования,
предъявляемые к процессу
- Проанализировать методы расчета сварных соединений
Методы исследования:
Анализ технической (технологической) литературы, спец. литературы по основам проектирования, по обработке материалов.
Глава 1. Электронно-лучевая сварка – как один из методов соединения металлов и их сплавов
1.1.Понятие лучевой сварки и отличие ее от других видов
В данном разделе курсовой
работы будет рассмотрена электронно-
Сварка – это технологический процесс получения неразъемного соединения посредством установления межатомных и межмолекулярных связей между свариваемыми частями изделия при их нагреве (местном или общем), или пластическом дефармировании.
Виды сварки:
Сварка плавлением осуществляется при нагреве сильным концентрированным источником тепла (электрической дугой, плазмой и др.) кромок свариваемых деталей, в результате чего кромки в месте соединения расплавляются, самопроизвольно сливаются, образуя общую сварочную ванну, в которой происходят некоторые физические и химические процессы.
Сварка давлением осуществляется пластическим деформированием металла в месте соединения под действием сжимающих усилий. В результате различные загрязнения и окислы на свариваемых поверхностях вытесняются наружу, а чистые поверхности сближаются по всему сечению на расстояние атомного сцепления.
Основные виды сварки:
Ручная дуговая сварка осуществляется покрытыми металлическими электродами. К электроду и свариваемому металлу подводится переменный или постоянный ток, в результате чего возникает дуга, постоянную длину которой необходимо поддерживать на протяжении всего процесса сварки.
Дуговая сварка под флюсом. Сущность сварки состоит в том, что дуга горит под слоем сварочного флюса между концом голой электродной проволоки. При горении дуги и плавлении флюса создаётся газошлаковая оболочка, препятствующая отрицательному воздействию атмосферного воздуха на качество сварного соединения.
Дуговая сварка в защитном газе производится как неплавящимся (чаще вольфрамовым), так и плавящимся электродам.
При сварке неплавящимся электродом дуга горит между электродом и свариваемым металлом в защитном инертном газе. Сварочная проволока вводится в зону сварки со стороны.
Сварка плавящимся электродам выполняется на полуавтоматах и автоматах. Дуга в данном случае возникает между непрерывно подающейся голой проволокой и свариваемым металлом.
В качестве защитных газов применяют инертные (аргон, гелий, азот) и активные газы (углекислый газ, водород, кислород), а также смеси аргона с гелием, либо углекислым газом, либо кислородом; углекислого газа с кислородом и др.
Газовая сварка осуществляется путём нагрева до расплавления свариваемых кромок и сварочной проволоки высокотемпературным газокислородным пламенем от сварочной горелки. В качестве горючего газа применяется ацетилен и его заменители (пропан-бутан, природный газ, пары жидких горючих и др.)
Электрошлаковая сварка применяется для соединения изделий любой толщины в вертикальном положении. Листы устанавливают с зазором между свариваемыми кромками. В зону сварки подают проволоку и флюс. Дуга горит только в начале процесса. В дальнейшем после расплавления определённого количества флюса дуга гаснет, и ток проходит через расплавленный шлак.
Контактная сварка осуществляется при нагреве деталей электрическим током и их пластической деформации (сдавливании) в месте нагрева. Местный нагрев достигается за счёт сопротивления электрическому току свариваемых деталей в месте их контакта. Существует несколько видов контактной сварки, отличающихся формой сварного соединения, технологическими особенностями, способами подвода тока и питания электроэнергией.
Виды контактной сварки:
Электронно-лучевая сварка. Сущность процесса сварки электронным лучом состоит в использовании кинетической энергии электронов, быстро движущихся в глубоком вакууме. При бомбардировке поверхности металла электронами подавляющая часть их кинетической энергии превращается в теплоту, которая используется для расплавления металла.
Для сварки необходимо: получить свободные электроны, сконцентрировать их и сообщить им большую скорость, чтобы увеличить их энергию, которая при торможении электронов в свариваемом металле превращается в теплоту.
Электронно-лучевой сваркой сваривают тугоплавкие и редкие металлы, высокопрочные, жаропрочные и коррозионно-стойкие сплавы и стали.
Диффузионная сварка в вакууме имеет следующие преимущества: металл не доводится до расплавления, что даёт возможность получить более прочные сварные соединения и высокую точность размеров изделий; позволяет сваривать разнородные материалы: сталь с алюминием, вольфрамом, титаном, металлокерамикой, молибденом, медь с алюминием и титаном, титан с платиной и т. п.
Плазменной сваркой можно сваривать как однородные, так и разнородные металлы, а также неметаллические материалы. Температура плазменной дуги, применяемой в сварочной технике, достигает 30 000 C. Для получения плазменной дуги применяются плазмотроны с дугой прямого или косвенного действия. В плазмотронах прямого действия плазменная дуга образуется между вольфрамовым электродом и основным металлом. Сопло в таком случае электрически нейтрально и служит для сжатия и стабилизации дуги. В плазмотронах косвенного действия плазменная дуга создаётся между вольфрамовым электродом и соплом, а струя плазмы выделяется из столба дуги в виде факела. Дугу плазменного действия называют плазменной струёй. Для образования сжатой дуги вдоль её столба через канал в сопле пропускается нейтральный одноатомный (аргон, гелий) или двухатомный газ (азот, водород и другие газы и их смеси). Газ сжимает столб дуги, повышая тем самым температуру столба.
Лазерная сварка. Лазер – оптический квантовый генератор (ОПГ). Излучателем – активным элементом – в ОРГ могут быть: 1) твёрдые тела – стекло с неодимом, рубин и др.; 2) жидкости – растворы окиси неодима, красители и др.; 30 газы и газовые смеси – водород, азот, углекислый газ и др.; 4) полупроводниковые монокристаллы – арсениды галлия и индия, сплавы кадмия с селеном и серой и др. Обрабатывать можно металлы и неметаллические материалы в атмосфере, вакууме и в различных газах. При этом луч лазера свободно проникает через стекло, кварц, воздух.
Холодная сварка металлов. Сущность этого вида сварки состоит в том, что при приложении большого давления к соединяемым элементам в месте их контакта происходит пластическая деформация, способствующая возникновению межатомных сил сцепления и приводящая к образованию металлических связей. Сварка производится без применения нагрева. Холодной сваркой можно получать соединения стык, внахлёстку и втавр. Этим способом сваривают пластичные металлы: медь, алюминий и его сплавы, свинец, олово, титан.
Сварка трением выполняется в твёрдом состоянии под воздействием теплоты, возникающей при трении поверхностей свариваемых деталей, с последующим приложением сжимающих усилий. Прочное сварное соединение образуется в результате возникновения металлических связей между контактирующими поверхностями свариваемых деталей.
Высокочастотная сварка основана на нагревании металла пропусканием через него токов высокой частоты с последующим сдавливанием обжимными роликами. Такая сварка может производиться с подводом тока контактами и с индукционным подводом тока.
Сварка ультразвуком. При сварке ультразвуком неразъёмное соединение металлов образуется при одновременном воздействии на детали механических колебаний высокой частоты и относительно небольших сдавливающих усилий. Этот способ применяется при сварке металлов, чувствительных к нагреву, пластичных металлов, неметаллических материалов.
Сварка взрывом основана на воздействии направленных кратковременных сверхвысоких давлений энергии взрыва порядка (100...200) Х 108 Па на свариваемые детали. Сварку взрывом используют при изготовлении заготовок для проката биметалла, при плакировке поверхностей конструкционных сталей металлами и сплавами с особыми физическим и химическими свойствами, а также при сварке деталей из разнородных металлов и сплавов.
Электронно-лучевая сварка (ЭЛС)
Рассмотри поподробнее ЭЛС:
На рис. 1.1 представлена типовая
функциональная схема электронно-лучевой
установки. Установка состоит из
вакуумной камеры 1, в верхней
части которой размещается
Рис. 1.1 - Функциональная схема технологической электронно-лучевой установки: 1 - вакуумная камера; 2 - электронная пушка; 3 - высоковольтный выпрямитель; 4 - пульт управления; 5 - механизм перемещения обрабатываемого изделия; 6 -обрабатываемое изделие
Вакуум при электронно-лучевой обработке необходим как для создания и формирования электронного пучка, так и для защиты обрабатываемого металла от действия кислорода и азота воздуха, ускорения дегозации металла при плавлении, удаления некоторых вредных примесей и др.
Способ ЭЛС основан на использовании энергии, высвобождаемой при торможении потока ускоренных электронов в свариваемых материалов [6]. Преобразование кинетической энергии в тепловую характеризуется высоким к.п.д.
Схема установки для
электронно-лучевой сварки