Пути и способы исследовательской деятельности младших школьников

Автор работы: Пользователь скрыл имя, 23 Апреля 2014 в 20:52, курсовая работа

Краткое описание

Цель курсовой работы: определить у младших школьников технику выполнения исследовательской деятельности.
Главная цель исследовательского обучения - формирование способности самостоятельно, творчески осваивать и перестраивать новые способы деятельности в любой сфере человеческой культуры.

Содержание

Введение
Глава 1. Теоретические основы исследовательской деятельности младших школьников.
1.1 Сущность и содержание исследовательской деятельности младших школьников.
1.2 Психолого-педагогические основы и условия организации исследования младших школьников.
1.3 Виды исследовательских работ учащихся младших классов.
Глава 2. Обобщение опыта работы учителей по путям и способам исследовательской деятельности младших школьников.
2.1 Содержание подготовительной работы к выполнению исследований.
2.2 Формирование организации исследовательской деятельности младших школьников.
2.3 Анализ результатов исследовательской деятельности младших школьников.
Заключение

Вложенные файлы: 1 файл

Курсовая по педагогике.docx

— 1.23 Мб (Скачать файл)

В результате исследования нами были рассмотрены сущность и содержание исследовательской деятельности, проанализированы психолого-педагогические основы и содержание исследовательской деятельности младших школьников, выявлены педагогические условия организации исследования младших школьников.

В ходе исследования установлено, что проблема формирования исследовательских умений в начальной школе является актуальной для современной образовательной практики, но недостаточно разработанной в педагогической теории и практике. Учебно-исследовательская деятельность направлена на формирование разных групп исследовательских умений. В диссертации описаны пять групп исследовательских умений учащихся начальной школы, которые соответствуют содержанию и этапам учебно-исследовательской деятельности: умения организовывать свою деятельность, работать с информацией, осуществлять учебное исследование, оформлять и представлять результат исследования, анализировать и оценивать учебно-исследовательскую деятельность.

Разработаны и представлены критерии оценки сформированности умений исследовательской деятельности учащихся начальной школы (практическая готовность, мотивация к ведению исследования, проявление креативности, самостоятельности) и определены на их основе уровни сформированности умений исследовательской деятельности учащихся начальных классов (исходный, начальный, продуктивный, креативный).

Выявлены, обоснованы и экспериментально проверены педагогические условия, обеспечивающие эффективность процесса формирования исследовательских умений младших школьников: ознакомление младших школьников с содержанием и техникой выполнения исследований, формирование у учащихся умений самостоятельной работы, формирование умений самоконтроля и развитие творческих способностей и инициативы учащихся. При этом были учтены возрастные особенности при организации обучения исследовательской деятельности; мотивированность исследовательской деятельности школьников; позиция и деятельность педагога-организатора учебно-исследовательской деятельности по обеспечению систематичности и целенаправленности исследовательской деятельности учащихся начальных классов путем реализации технологии организации исследовательской деятельности.

Разработана и апробирована в практике обучения технология формирования исследовательских умений младших школьников, включающая организацию коллективных, групповых, индивидуальных учебных исследований, алгоритмизацию исследовательских этапов, преобладание игровых, проблемных, эвристических и исследовательских методов. Данная технология реализовывалась через специальные занятия по курсу «Исследовательская деятельность в начальной школе» и его учебно-методическое обеспечение.

Описанные выше условия способствуют эффективному формированию у учащихся младших классов умений осуществлять учебное исследование, находить информацию по теме и работать с ней, организовывать и планировать свою деятельность, оформлять и представлять результат (продукт) своей исследовательской работы, анализировать и оценивать свою учебно-исследовательскую работу и работу одноклассников.

Таким образом, задачи, поставленные в начале работы, были решены, цель исследования достигнута, гипотеза подтверждена.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Приложение 1

 

Анкета для учителей начальной школы

 

1. Как вы считаете, возможна  ли организация исследовательской  деятельности обучающихся в начальной школе?

 

2. Какие типы заданий  исследовательского характера вы  используете на уроках математики (задания на составление задач  на основе обобщения, на составление  задач обратных данным, с использованием  приема аналогии, на исследование  свойств объектов, на составление  алгоритма решения задач)?

 

3. Достаточно ли заданий  исследовательского характера в  учебниках начальной школы?

 

4. С какими трудностями  сталкиваются обучающиеся при решении задач исследовательского характера?

 

5. Вызывают ли у младших  школьников интерес задания исследовательского  характера?

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Приложение 2

 

Самостоятельная работа № 1

1. Посмотри внимательно  на таблицу умножения на 9.

1*9=9

2*9=19

3*9=27

4*9=36

5*9=45

6*9=54

7*9=63

8*9=72

9*9=81

10*9=90

Какие закономерности вы видите?

2. Можно ли множество  фигур, изображенных на рисунке, разбить:

а) на две группы – круги и четырехугольники?

б) на три группы – четырехугольники, круги и белые фигуры?

 

3. Назови группу чисел  общим свойством.

2,8,16, 32

2, 4, 5, 7, 9

3, 7, 11, 21

13, 16, 45, 78

345, 666, 793, 900

4. В одном альбоме 48 марок, в другом 37. Поставь вопрос к  данному условию. Запиши решение  каждой задачи выражением. Вычисли  значение всех выражений.

5. На трех этажах гаража  стояло 280 автомашин. На втором этаже  – 100 автомашин, на третьем – 60. Сколько  автомашин стояло на первом  этаже? Составь и реши задачу  обратную данной.

 

 

 

 

 

 

 

 

ПРИЛОЖЕНИЕ 3

 

Исследование числа

Дано число 546 078.

– Что вы можете рассказать об этом числе? (Оно шестизначное, четное, в его записи использованы цифры 0, 4, 5, 6, 7, 8.) Сколько единиц первого класса, второго класса в этом числе? Найдите сумму цифр в каждом из чисел 546 и 78. (Она одинакова и равна 15.) Выполните действия: 546 + 78, 546 – 78, 546 - 78, 546: 78. (546 + 78 = 624, 546 - 78 = 42588, 546 – 78 = 468, 546: 78 = 7.) Что можно сказать о числах 624 и 468? (В их записи есть одинаковые цифры – 4 и 6.) Из цифр, используемых в записи чисел 468 и 624. оставьте неповторяющиеся цифры 8 и 2. Составьте из них двузначные числа и умножьте их на 7. (28 - 7 = 196, 82 - 7 = 574.) Что интересного вы заметили? (У чисел 196 и 574 одинаковая сумма цифр. Она равна 16.) Найдите значение суммы и разности чисел 574 и 196. (574 + 196 = 770, 574 - 196 = 378.) Определите сумму цифр чисел 770 и 378. (14 и 18.) Разделите числа 770 и 378 на их сумму цифр. (770: 14 = 55, 378: 18 = 21.) Числа 546 и 78 разделите или умножьте на 21. (78 на 21 без остатка не делится. 546 - 21 = 11 466,

78 - 21 = 1 638, 546: 21 = 26.) Что интересного вы заметили? (В записи чисел в равной части равенств есть одинаковая цифра 6.) Выполните деление и умножение с числами 1 638 и 26. (1 638: 26 = 63, 1 638 - 26 = 42 588.) Что интересного вы заметили? (В значении произведения получено число 42 588. Оно также было получено при умножении 546 на 78). Сравните равенства: 546 - 78 = 42 588, 1 638 - 26 = 42 588. (Первый множитель возрастает в 3 раза, а второй – уменьшается в 3 раза, следовательно, значение произведения остается без изменения.)

Исследование ряда чисел

Дан ряд чисел: 13, 17, 21.

– Что можно сказать об этих числах? (Двузначные, нечетные, увеличиваются на 4.) Продолжите ряд влево, уменьшая числа на 4, и вправо, увеличивая числа на 4. (1, 5, 9, 13,17, 21, 25, 29, 33, 37.) Какие числа в получившемся ряду? (Однозначные и двузначные, нечетные.) Разделите их на две равные части посередине и запишите в две строки.

Ученики выполняют запись:

1       5       9           13        17

21     25      29        33        37

– Что интересного вы заметили? (В числах, записанных в каждом столбике, одинаковое количество единиц, а количество десятков в числах второго ряда на 2 больше, чем в числах первого ряда.) Сложите числа каждого столбика (22, 30, 38, 46, 54.) Что можно сказать о них? (Они четные, увеличиваются на 8.) Почему? (Мы дважды увеличили числа на 4.) Используя числа из подчеркнутого ряда, составьте верные равенства.

(17 + 9 – 1 =25, 13 + 17 – 1 = 29, 13 + 25 – 1 = 37, 5 + 9 – 1 = 13,

17 + 5 – 1 =21, 29 + 9 – 1 = 37, 25 – 5 + 1 = 21, 29 – 9 + 1 = 21, 33 – 13 + 1 =21.) Сложите числа из подчеркнутого ряда парами, начиная с самого маленького и самого большого. (1 + 37 = 38. 5 + 33 = 38, 9 + 29 = 38, 13 + 25 = 38,

17 + 21 = 38.) Найдите разность этих чисел. (37 – 1 = 36, 33 – 5 = 28,

29 – 9 = 20, 25 – 13 = 12, 21 – 17 = 4.) Запишите результаты в строчку. (36, 28, 20, 12, 4.) Что можно сказать об этих числах? (Каждое следующее число меньше предыдущего на 8.) Найдите "лишнее" число. Чем оно отличается от других чисел? (4 – однозначное число, остальные числа двузначные.) Разделите каждое число на 4. (36: 4 = 9, 28: 4 = 7, 20: 4 = 5, 12: 4 = 3,

4: 4 = 1.) Что интересного вы заметили? (Значения частных выражены однозначными нечетными числами.)

Исследование суммы

Даны выражения:

42 + 6          35 + 6          27 + 3

46 + 20        36 + 50        23 + 70

– Что можно сказать об этих выражениях? (В выражениях, записанных в верхнем ряду, вторые слагаемые – однозначные числа. Они равны количеству единиц в двузначных числах, являющихся первыми слагаемыми в выражениях нижнего ряда. Цифра, обозначающая количество единиц в первом слагаемом в выражениях верхнего ряда, обозначает и количество десятков второго слагаемого в выражениях нижнего ряда.) Найдите значения сумм данных выражений. (42 + 6 = 48, 46 + 20 = 66, 35 + 6 = 41, 36 + 50 = 86, 27 + 3 = 30, 23 + 70 = 93.) Запишите все двузначные числа из равенств. (42, 48, 46, 20, 35, 41, 36, 50, 27, 23, 70.) На какие группы их можно разделить? (Четные числа: 42, 48, 46, 20, 36, 50, 70; нечетные числа: 35, 41, 27, 23.) Можно ли выделить еще одну группу чисел? (Из четных чисел можно выделить в новую группу числа, обозначающие круглые десятки: 20, 50, 70.) Составьте равенства и неравенства из чисел 20, 50, 70. Расположите четные числа (без круглых десятков) в порядке возрастания и определите закономерность. (36, 42, 46, 48. Числа расположены в порядке возрастания на 6, 4 и 2.) Можно ли продолжить этот числовой ряд по этой закономерности? (Вправо продолжить ряд нельзя, а влево – можно, уменьшая числа на 8, 10, 12 и т.д.) Продолжите. (6, 18, 28, 36, 42, 48.) Что можно сказать об этих числах? (Числовой ряд увеличился на три числа. Число 6, в отличие от всех других чисел, – однозначное.) Найдите пары чисел, при сложении которых не будет перехода через десяток.

Ученики записывают равенства:

36 + 42 = 78                  42 + 46 = 88

9 + 6=15                       6+10=16

42 + 6 = 48                   6 + 6= 12

– Найдите пары чисел, при сложении которых в результате получаются круглые числа. (42 + 18 = 60, 42 + 48 = 90, 44 + 26 = 70.) Найдите пары чисел, при сложении которых необходимо выполнить сложение с переходом через десяток.

Исследование разности.

Даны выражения:

71 – 17        43 – 34      84 – 48

91 – 19        64 – 46

– Что можно сказать об этих выражениях? (В них уменьшаемые и вычитаемые – двузначные числа. Вычитаемые записаны теми же цифрами, что и уменьшаемые, но в обратном порядке).  Найдите значения этих выражений. (71 – 17 = 54, 91 – 19 = 72, 43 – 34 = 9, 64 – 46 = 18, 84 – 48 = 36.) Что интересного вы заметили? (Значения разностей 54, 9, 36, 72 и 18 имеют одинаковую сумму цифр – 9. Следовательно, все эти числа делятся на 9.) Расположите значения разностей в порядке возрастания. (9, 18, 36, 54, 72.) Что интересного вы заметили? (Невозможно подобрать двузначные числа, записанные одинаковыми цифрами так, чтобы значение их разности было бы равно 81.) Определите, в каких случаях значение разности чисел, записанных одинаковыми числами, будет наименьшим, т.е. равным 9. (21 – 12, 32 – 23,  
43 – 34, 54 – 45, 65 – 56, 76 – 67, 87 – 78, 98 – 89.) Что интересного вы заметили? (Значение разности будет равно 9 в том случае, если уменьшаемое и вычитаемое записаны цифрами, обозначающими числа, которые в числовом ряду расположены рядом и отличаются на одну единицу.) Запишите выражения так, чтобы количество десятков в уменьшаемых было одинаковым, и проверьте свои наблюдения.

Ученики записывают столбики равенств.

91 – 19=72        81 – 18=63

92 – 29=63        82 – 28=54

93 – 39=54         83 – 38=45

94 – 49=45         84 – 48=36

95 – 59=36         85 – 58=27

96 – 69=27         86 – 68=18

97 – 79=18         87 – 78=9

98 – 89=9

 

71 – 17=54         61 – 16=45

72 – 27=45         62 – 26=36

73 – 37=36         63 – 36=27

74 – 47=27         64 – 46=18

75 – 57=18         65 – 56=9

76 – 67=9

 

51 – 15=36         41 – 14=27

52 – 25=27         42 – 24=18

53 – 35=18         43 – 34=9

54 – 45=9

 

32 – 23=9           21 – 12=9

31 – 13=18

После того как будут обобщены результаты действий по всем числам, можно сделать выводы: а) значение разности, равное 9, есть во всех столбиках, равное 72 – в одном случае (91 – 19); б) с уменьшением количества десятков в уменьшаемом уменьшается и количество значений разности.

– Запишите в порядке возрастания числа, которые использовались для обозначения количества десятков и единиц в данном упражнении. (1, 2, 3, 4, 5, 6, 7, 8, 9.) Можно ли, пользуясь отрезком числового ряда, назвать результат вычитания чисел, записанных одинаковыми цифрами, не производя вычислений?

Информация о работе Пути и способы исследовательской деятельности младших школьников