Системы беспроводной передачи информации

Автор работы: Пользователь скрыл имя, 20 Октября 2012 в 12:34, реферат

Краткое описание

HiperLAN2 базируется на недавно разработанной радиотехнологии, созданной специально для взаимодействий по локальной сети в рамках проекта Broadband Radio Access Networks (BRAN), реализуемого Европейским институтом стандартов в области электросвязи (ETSI), радиотехнология — так называемое уплотнение с ортогональным разделением частот (Orthogonal Frequency Division Multiplexing, OFDM), реализация которого является весьма серьезной технической задачей. Наиболее привлекательной

Содержание

Содержание:
1. Системы беспроводной передачи ниформации.
1.1. HiperLAN2;
1.2. MMDS;
1.3. WLL;
1.4. IrDA;
1.5. IEEE 802.11
1.5.1. Стандарт IEEE 802.11a
1.5.2. IEEE 802.11b
1.5.3. IEEE 802.11g
1.5.3.1. Физический уровень протокола IEEE 802.11g
2. Методы передачи данных.
2.1. Технология DSSS.
2.2. Технология FHSS.
3. Безопасность.
3.1. Безопасность передаваемой информации.
3.2. Безопасность для здоровья.
4. Режимы работы.
4.1. Ad Hoc.
4.2. Infrastructure Mode.

Вложенные файлы: 1 файл

Системы беспроводной передачи информации..doc

— 1.67 Мб (Скачать файл)

Санкт-Петербургский  Государственный Университет Информационных Технологий, Механики и Оптики.

 

 

 

 

 

 

 

 

 

 

 

 

 

Системы беспроводной передачи информации.

 

 

 

 

 

 

 

 

 

 

Выполнил студент:

Пономарев Александр  Сергеевич

Факультета: КТиУ

Кафедры: ПКС(КЗОИ)

Группы: 2158

 

 

 

 

 

 

 

 

 

 

 

 

 

Санкт-Петербург, 2005 г.

Содержание:

  1. Системы беспроводной передачи ниформации.
    1. HiperLAN2;
    2. MMDS;
    3. WLL;
    4. IrDA;
    5. IEEE 802.11
      1. Стандарт IEEE 802.11a
      2. IEEE 802.11b
      3. IEEE 802.11g
        1. Физический уровень протокола IEEE 802.11g
  2. Методы передачи данных.
    1. Технология DSSS.
    2. Технология FHSS.
  3. Безопасность.
    1. Безопасность передаваемой информации.
    2. Безопасность для здоровья.
  4. Режимы работы.
    1. Ad Hoc.
    2. Infrastructure Mode.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Системы беспроводной передачи информации.

В настоящее время имеется широкий выбор беспроводных технологий пользовательского доступа. Системы  радиодоступа  строятся в соответствии со следующими стандартами:

  1. HiperLAN2;
  2. MMDS;
  3. WLL;
  4. IrDa;
  5. IEEE 802.11/b/g.

1.1. HiperLAN2

HiperLAN2 базируется на недавно разработанной радиотехнологии, созданной специально для взаимодействий по локальной сети в рамках проекта Broadband Radio Access Networks (BRAN), реализуемого Европейским институтом стандартов в области электросвязи (ETSI), радиотехнология — так называемое уплотнение с ортогональным разделением частот (Orthogonal Frequency Division Multiplexing, OFDM), реализация которого является весьма серьезной технической задачей. Наиболее привлекательной чертой HiperLAN2 является ее высокая скорость, в качестве каковой иногда ошибочно называется величина 54 Мбит/с. Действительно, номинальная скорость радиопередачи будет составлять 54 Мбит/с, но типичная скорость для приложений будет ближе к 20 Мбит/с. Другая характерная черта — поддержка QoS, что весьма важно для таких приложений, как видео и речь. Архитектура HiperLAN2 обеспечивает соединение со множеством типов сетей, в том числе Ethernet (она будет поддерживаться в числе первых), IP, ATM и PPP. Функции защиты включают аутентификацию и шифрование. Совершенно Построение сетей на основе технологии HiperLAN2 потребует значительных инвестиций. Во-первых, единственный стандарт по беспроводные локальные сети,  на сегодняшний день широко применяемый был предложен IEEE, а вовсе не ETSI. Во-вторых, IEEE уже имеет несколько стандартов на беспроводные локальные сети, в том числе стандарт 802.11a, обеспечивающий скорость передачи 54 Мбит/с. И в-третьих, ни одна компания из числа поддержавших проект HiperLAN2 не является признанным лидером в области локальных сетей. Работает данная технология в 5Ггц диапазоне который в настоящий момент еще не лицензирован. Чтобы разделяемые сети в стандарте HiperLAN2 действительно обеспечивали широкополосный доступ, они должны иметь множество точек доступа и множество каналов, которые обеспечивают свободу передвижений в пределах определенной территории.

1.2. MMDS

Система MMDS (Microwave Multipoint Distribution Service - Микроволновые многоточечные  распределительные системы) получили в последние годы широкое распространение  как альтернатива классическим кабельным  сетям, в которых распределительная сеть строится за счет прокладки коаксиальных или оптических кабелей. Возможность интеграции систем MMDS c высокоскоростным беспроводным обменом цифровыми данными, позволяет легко решить проблему «последней» мили, обеспечивая радиус вещания, ограниченный линией горизонта (около 60 км).

Запрашиваемые пользователем данные транслируются нисходящими потоками в цифровых каналах, использующих модуляцию QPSK, 16-, 32-, 64-, 128- или 256-QAM. При этом, в  зависимости от ширины канала и выбранной  схемы модуляции сигнала, в одном канале шириной до 8 МГц обеспечивается скорость передачи данных до 56 Мбит/сек. времени, что в 1000-1500 раз быстрее, чем позволяет аналоговый телефонный модем (33,6 Кбит/с), в 200-400 раз быстрее, чем по линии ISDN (64 и 128 Кбит/с). Радиус зоны обслуживания системы ММDS определяется высотой подвеса передающей антенны, мощностью передатчика, количеством передаваемых каналов, потерями в антенно-фидерном тракте и коэффициентом усиления передающей и приёмной антенн. В процессе строительства и эксплуатации выявлен ряд преимуществ системы MMDS. Главным недостатком технологии является высокая стоимость оборудования, большое число обслуживающего персонала.

1.3. WLL

Первые системы фиксированного беспроводного доступа (WLL -Wireless Local Loop) были разработаны в конце 1980-х - начале 1990-х годов для решения весьма актуальной задачи - расширения зоны обслуживания АТС. Название этого класса систем определяет и их назначение - предоставление услуг традиционной телефонии абонентам, расположенным за пределами зоны обслуживания.

Системы WLL являются системами типа "точка - многоточка", работают в диапазонах частот от 1,5 до 3,5 ГГц, а сети на базе систем WLL строятся по сотовому принципу. В состав систем WLL входят:

  1. центральная станция (ЦС), обеспечивающая подключение и управление всей сетью в целом;
  2. ретрансляционные станции (PC), позволяющие обеспечить сплошное покрытие обслуживаемой территории и расширить зону обслуживания до нескольких сотен километров (в зависимости от количества последовательно включенных ретрансляторов);
  3. терминальные станции (ТС), устанавливаемые в зонах обслуживания;
  4. система технического обслуживания, реализованная в виде программного обеспечения на уровне управления сетевыми элементами и устанавливаемая на персональном компьютере.

Системы WLL предоставляют услуги ТфОП (телефония, факс и передача данных с использованием dial-up-модемов) абонентам, удаленным на десятки километров. Основной недостаток данных систем является высокая стоимость, сложность установки и эксплуатации оборудования.

1.4. IrDa

ИК cистемы передачи трафика локальных  сетей или для внутрикорпоративных  систем стали появляться на рынке  в начале 90-х годов. Одним из самых  активных первопроходцев была канадская  компания A.T.Schindler, но она была не единственной. Заметную активность проявляли фирмы Joltи SilCom системы, с обычным сетевым интерфейсами Ethernet, Token Ring, обеспечивали передачу данных на дистанциях до 500 метров и использовали в передающем устройстве инфракрасные полупроводниковые излучающие диоды.

Системы текоммуникационного применения получили свое развитие лишь к 1998г, когда уровень  развития лазерной технологии позволил освоить в массовом производстве лазерные полупроводниковые диоды  мощностью 100мВт и более, с высоким  показателем параметра наработки на отказ (MTBF), а именно более 50000 часов – тот минимальный уровень, который требуется для надежного функционирования телекоммуникационной системы.

Значительный  опыт, приобретенный в результате большого количества инсталляций систем передачи информации на основе оптоволоконных каналов с инфракрасными приемопередатчиками, позволил довести эту технологию до совершенства. При этом был обеспечен высокий уровень безопасности данных и достигнута оптимальная стоимость, так как в данном случае отпадала необходимость в использовании дорогих в прокладке арендуемых кабельных каналов связи.

Инфракрасный канал работает в  диапазоне высоких частот, где сигналы мало подвержены электрическим помехам. В соответствии с этим, передача данных осуществляется с небольшим числом ошибок и высокими скоростями. Вместе с этим для использования канала необходимо, чтобы Оконечное Оборудование Данных (ООД) "видело" друг друга. Более того, из-за быстрого затухания сигнала в не всегда чистой атмосфере, длина инфракрасного канала в воздухе ограничена небольшими расстояниями. Так, при использовании направленной антенны и маломощного передатчика (100мВт) связь возможна на расстоянии до 30-50 м. Однако, применение направленной антенны с более мощным передатчиком (250 мВт) увеличивает это расстояние до 10 км. Из-за пыли, дождя, снега происходит рассеивание сигнала.

1.5. IEEE 802.11

На сегодняшний день существуют следующие разновидности  данного стандарта построения беспроводных локальных сетей IEEE 802.11 a/b/g Стандарт IEEE 802.11, принятый в1997 г., стал первым стандартом данного семейства. Он предусматривает использование диапазона час-тот 2,4 ГГц – 5 ГГц, а также технологии расширения спектра скачкообразной сменой частоты (Frequency Hopping Spread Spectrum или технологии расширения спектра по методу прямой последовательности. [Direct Sequence Spread Spectrum DSSS. Стандарт IEEE 802.11 обеспечивает пропускную способность до 2 Мбит/с в расчете на одну точку доступа. В стадии рассмотрения находятся такие стандарты как IEEE 802.11e/f/h/i/j/n.

1.5.1. СТАНДАРТ IEEE 802.11a

Стандарт IEEE 802.11 а предусматривает использование нового, не требующего лицензирования частотного диапазона 5 ГГц и модуляции по методу ортогонального мультиплексирования с разделением частот [Orthogonal Frequency Domain Multiplexing [OFDM]). Применение этого стандарта позволяет увеличить скорость передачи в каждом канале с 11 Мбит/с до 54 Мбит/с. При этом одновременно может быть организовано до восьми непересекающихся каналов (или точек присутствия), а не три, как в диапазоне 2,4 ГГц. Продукты стандарта IEEE 802.11а (сетевые адаптеры NIC и точки доступа) не имеют обратной совместимости с продуктами стандартов 802.11 и 802.11b, так как они работают на разных частотах.

1.5.2. СТАНДАРТ IEEE 802.11b

Стандарт IEEE 802.11Ь был  принят в 1999 г. в развитие принятого  ранее стандарта IEEE 802.11. Он также предусматривает использование диапазона частот 2,4 ГГц, но только с модуляцией DSSS. Данный стандарт обеспечивает пропускную способность до 11 Мбит/с в расчете на одну точку доступа.

Продукты стандарта IEEE 802.11b, поставляемые разными изготовителями, тестируются на совместимость и сертифицируются организацией Wireless Ethernet Compatibility Alliance (WECA), которая в настоящее время больше известна под названием Wi-Fi Alliance. Совместимые беспроводные продукты, прошедшие испытания по программе "Альянса WH могут быть маркированы знаком Wi-Fi.

В настоящее время ЕЕЕ 802.11b это самый распространенный стандарт, на базе которого построено большинство беспроводных локальных сетей.

1.5.3. СТАНДАРТ IEEE 802.11g

Проект стандарта IEEE 802.11g был утвержден в октябре 2002 г. Этот стандарт предусматривает использование диапазона частот 2,4 ГГц, обеспечивая скорость передачи 54 Мбит/с и превосходя, таким образом, ныне действующий стандарт 802.11b. Кроме того, он гарантирует обратную совместимость со стандартом 802.11b. Обратная совместимость стандарта IEEE 802.11g может быть реализована в режиме модуляции DSSS, и тогда скорость передачи будет ограничена одиннадцатью мегабитами в секунду либо в режиме модуляции OFDM, при котором скорость составляет 54 Мбит/с. Таким образом, данный стандарт является наиболее приемлемым при построении беспроводных сетей.

1.5.3.1. ФИЗИЧЕСКИЙ УРОВЕНЬ ПРОТОКОЛА 802.11g

Стандарт IEEE 802.11g является логическим развитием стандарта 802.11b/b+ и предполагает передачу данных в  том же частотном диапазоне, но с более высокими скоростями. Кроме того, стандарт 802.11g полностью совместим с 802.11b, то есть любое устройство 802.11g должно поддерживать работу с устройствами 802.11b. Максимальная скорость передачи в стандарте 802.11g составляет 54 Мбит/с.

При разработке стандарта 802.11g рассматривались  несколько конкурирующих технологий: метод ортогонального частотного разделения OFDM и метод двоичного пакетного  сверточного кодирования PBCC.

В протоколе 802.11g предусмотрена  передача на скоростях 1, 2, 5,5, 6, 9, 11, 12, 18, 22, 24, 33, 36, 48 и 54 Мбит/с. Некоторые из данных скоростей являются обязательными, а некоторые – опциональными. Кроме того, одна и та же скорость может реализовываться при различной технологии кодирования. Ну и как уже отмечалось, протокол 802.11g включает в себя как подмножество протоколы 802.11b/b+.

Технология кодирования PBCC опционально может использоваться на скоростях 5,5; 11; 22 и 33 Мбит/с. Вообще же в самом стандарте обязательными  являются скорости передачи 1; 2; 5,5; 6; 11; 12 и 24 Мбит/с, а более высокие скорости передачи (33, 36, 48 и 54 Мбит/с) — опциональными.

Отметим, что для обязательных скоростей в стандарте 802.11g используется только кодирование CCK и OFDM, а гибридное  кодирование и кодирование PBCC является опциональным.

Для передачи на более  высоких скоростях используется квадратурная амплитудная модуляция QAM (Quadrature Amplitude Modulation), при которой  информация кодируется за счет изменения  фазы и амплитуды сигнала. В протоколе 802.11g используется модуляция 16-QAM и 64-QAM. В первом случае имеется 16 различных состояний сигнала, что позволяет закодировать 4 бита в одном символе. Во втором случае имеется уже 64 возможных состояний сигнала, что позволяет закодировать последовательность 6 бит в одном символе. Модуляция 16-QAM применяется на скоростях 24 и 36 Мбит/с, а модуляция 64-QAM — на скоростях 48 и 54 Мбит/с.

2. МЕТОДЫ ПЕРЕДАЧИ ДАННЫХ

Стандарт 802.11 предусматривает  использование двух методов передачи данных. Один из них получил название Direct Sequence Spread Spectrum (DSSS) - «метод прямой последовательности», а другой - Frequency Hopping Spread Spectrum (FHSS) - «метод частотных скачков». Оба эти метода используют принцип широкополосной передачи сигнала.

2.1. ТЕХНОЛОГИЯ DSSS

Метод DSSS использует всю полосу 2,4 ГГц одновременно, разбивая ее на 11 одинаковых полос. Для того, чтобы несколько каналов могли использоваться одновременно в одном и том же месте, необходимо, чтобы они отстояли друг от друга на 25 МГц (не перекрывались), для исключения взаимных помех. Таким образом, в одном месте может одновременно использоваться максимум 3 канала. Сигнал передатчика кодируется таким образом, что каждый бит передаваемой информации преобразуется в последовательность из 11 бит. После чего эта последовательность передается параллельно и одновременно по всем 11 полосам. Приемник, получивший эту последовательность, производит обратное преобразование сигнала. Каждая пара «передатчик-приемник» использует свой алгоритм кодирования, исключающий перехват сигнала другим приемником.

Первое  достоинство данного метода заключается  в надежной защите передаваемой информации. Вероятность совпадения схем кодирования  двух разных устройств практически  исключена. Расшифровать же такой сигнал, не зная алгоритма, невозможно.

Информация о работе Системы беспроводной передачи информации