Контрольная работа по «Статистика»

Автор работы: Пользователь скрыл имя, 27 Апреля 2015 в 12:52, контрольная работа

Краткое описание

Последние годы отмечены стремительным расширением области применения теоретико-вероятностных и статистических методов. Они применяются в различных науках: физике, техники, геологии, биологии, лингвистике, медицине, социологии, управлении и т. д. Один из основных разделов статистики - теория проверки статистических гипотез. Понятие практической статистики, процедура обоснованного сопоставления высказанной гипотезы относительно природы или величины неизвестных статистических параметров анализируемого явления с имеющимися в распоряжении исследователя выборочными данными (выборкой).

Содержание

Введение………………………………………………………………………………….2
1. Общие понятия проверки статистических гипотез…………………………………3
1.1 Сущность и виды проверки статистических гипотез............................…............3
2. Проверка различных типов статистических гипотез……………………………….8
2.1 Проверка гипотезы о законе распределения генеральной совокупности с использованием критерия Пирсона…………………………………..8
2.2 Проверка гипотезы с неизвестной дисперсией генеральной совокупности согласно критерию Стьюдента………………………………………………………..11
3. Сравнительный анализ методов статистического исследования РЦБ………….15
Практическая часть…………………………………………………………………..23
Заключение……………………………………………………………………………26

Вложенные файлы: 1 файл

Статистика.docx

— 46.65 Кб (Скачать файл)

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное

учреждение высшего профессионального образования

«Кузбасский государственный технический университет

имени Т.Ф. Горбачева»

 

 

                           Кафедра государственного и муниципального управления

 

 

Контрольная работа

 

по дисциплине «Статистика»

 

 

 

Выполнил:

                                                        студентка группы МУбз-131

Дудкина А.С.

Проверил:

Егорова Н.Н.

 

 

 

 

 

 

Кемерово  2015

Оглавление

Введение………………………………………………………………………………….2

1. Общие понятия  проверки статистических гипотез…………………………………3

  1.1 Сущность и виды проверки статистических  гипотез............................…............3                   

2. Проверка различных  типов статистических гипотез……………………………….8

2.1 Проверка гипотезы о законе распределения генеральной совокупности с использованием критерия Пирсона…………………………………..8

2.2 Проверка гипотезы с неизвестной дисперсией генеральной совокупности согласно критерию Стьюдента………………………………………………………..11

3. Сравнительный анализ  методов статистического исследования  РЦБ………….15

Практическая часть…………………………………………………………………..23

Заключение……………………………………………………………………………26

 

 

 

 

 

 

 

 

 

 

 

 

Введение

Последние годы отмечены стремительным расширением области применения теоретико-вероятностных и статистических методов. Они применяются в различных науках: физике, техники, геологии, биологии, лингвистике, медицине, социологии, управлении и т. д. Один из основных разделов статистики - теория проверки статистических гипотез. Понятие практической статистики, процедура обоснованного сопоставления высказанной гипотезы относительно природы или величины неизвестных статистических параметров анализируемого явления с имеющимися в распоряжении исследователя выборочными данными (выборкой).

Статистическая проверка гипотез проводится с помощью некоторого статистического критерия по общей логической схеме, включающей нахождение конкретного вида функции от результатов наблюдения (критической статистики), на основании которой принимается окончательное решение. Например, могут рассматриваться гипотезы об общем законе распределения исследуемой случайной величины, об однородности двух или нескольких обрабатываемых выборок, о числовых значениях параметров исследуемой генеральной совокупности и др. Результат проверки может быть либо отрицательным (данные наблюдения противоречат высказанной гипотезе), либо неотрицательным. В первом случае гипотеза ошибочна, во втором - ее нельзя считать доказанной: просто она не противоречит имеющимся выборочным данным, однако таким же свойством могут наряду с ней обладать и другие гипотезы. Для статистической проверки гипотез используются разные критерии. В частности, когда проверяется согласие между выборочным и гипотетическим распределениями, используется критерий согласия

 

 

 

 

1. Общие понятия проверки  статистических гипотез

1.1 Сущность и виды проверки  статистических гипотез

В процессе статистического анализа иногда бывает необходимо сформулировать и проверить предположения (гипотезы) относительно величины независимых параметров или закона распределения изучаемой генеральной совокупности (совокупностей).

Например, исследователь выдвигает гипотезу о том, что «выборка извлечена из нормальной генеральной совокупности» или «генеральные средние двух анализируемых совокупностей равны». Такие предположения называются статистическими гипотезами.

Сопоставление высказанной гипотезы относительно генеральной совокупности с имеющимися выборочными данными, сопровождаемое количественной оценкой степени достоверности получаемого вывода и осуществляемое с помощью того или иного статистического критерия, называется проверкой статистических гипотез.

Под статистической гипотезой понимаются различного рода предположения относительно характера или параметров распределения случайной переменной, которые можно проверить, опираясь на результаты наблюдений в случайной выборке.

Иными словами, статистической гипотезой называется предположение о свойстве генеральной совокупности, которое можно проверить, опираясь на данные выборки. Обозначается гипотеза буквой Н. Так, может быть выдвинута гипотеза о том, что средняя в генеральной совокупности равна некоторой величине.

Смысл проверки статистической гипотезы состоит в том, чтобы по имеющимся статистическим данным принять или отклонить статистическую гипотезу с минимальным рисков ошибки. Эта проверка осуществляется по определенным правилам.

Следует иметь в виду, что статистическая проверка гипотез имеет вероятностный характер. С помощью статистической проверки гипотез можно определить вероятность принятия ложного решения по тем или иным результатам статистического изучения данного явления. Если вероятность ошибки невелика, то статистические показатели исчисленные при изучении явления, могут быть использованы для практических целей при малом риске ошибки.

Гипотезы в свою очередь классифицируются на:

- простые и  сложные;

- параметрические  и непараметрические;

- основные (высказанные) и альтернативные (конкурирующие).

Если выдвигаемая гипотеза сводится к утверждению о том, что значение некоторого неизвестного параметра генеральной совокупности в точности равно заданной величине, то эта гипотеза называется простой.

Например: «Среднедушевой совокупный доход населения России составляет 10000 рублей в месяц»; «Уровень безработицы (доля безработных в численности экономически активного населения) в России равен 9%».

Сложной называют гипотезу, которая состоит из конечного или бесконечного множества простых гипотез, при этом указывается некоторая область вероятных значений параметра.

Гипотезы о параметрах генеральной совокупности называются параметрическими, о распределениях - непараметрическими.

Выдвинутая гипотеза называется нулевой (основной). Ее принято обозначать Н0. При этом предполагается, что действительное различие сравниваемых величин равно нулю, а выявленное по данным отличие от нуля носит случайный характер. Нулевая гипотеза отвергается тогда, когда по выборке получается результат, который при истинности выдвинутой нулевой гипотезы маловероятен.

По отношению к высказанной (основной) гипотезе всегда можно сформулировать альтернативную (конкурирующую), противоречащую ей. Альтернативную (конкурирующую) гипотезу принято обозначать Н1.

В качестве нулевой гипотезы Н0 принято выдвигать простую гипотезу, так как обычно бывает удобнее проверять более строгое утверждение.

По своему содержанию статистические гипотезы можно подразделить на несколько основных типов:

- гипотезы о  виде закона распределения исследуемой  случайной величины;

- гипотезы о  числовых значениях параметров  исследуемой генеральной совокупности;

- гипотезы об  однородности двух или нескольких  выборок или некоторых характеристик  анализируемых совокупностей;

- гипотезы об  общем виде модели, описывающей  статистическую зависимость между  признаками; и др.

Так как проверка статистических гипотез осуществляется на основании выборочных данных, т.е. ограниченного ряда наблюдений, решения относительно нулевой гипотезы Н0 имеют вероятностный характер. Другими словами, такое решение неизбежно сопровождается некоторой, хотя возможно и очень малой, вероятностью ошибочного заключения как в ту, так и в другую сторону.

Так, в какой-то небольшой доле случаев а нулевая гипотеза Н0 может оказаться отвергнутой, в то время как в действительности в генеральной совокупности она является справедливой. Такую ошибку называют ошибкой 1-го рода, а ее вероятность - уровнем значимости и обозначают.?

Наоборот, в какой-то небольшой доле случаев (?нулевая гипотеза Н0 принимается, в то время как на самом деле в генеральной совокупности она ошибочна, а справедлива альтернативная гипотеза Нх. Такую ошибку называют ошибкой 2-го рода. Вероятность ошибки 2-го рода обозначается как ??Вероятность 1 - называют мощностью критерия.

При фиксированном объеме выборки можно выбрать по своему усмотрению величину вероятности только одной из ошибок. Увеличение вероятности одной из них приводит к снижению другой.

Принято задавать вероятность ошибки 1-го рода ?? уровень значимости. Как правило, пользуются некоторыми стандартными значениями уровня значимости: 0,1; 0,05; 0,025; 0,01; 0,005; 0,001. Тогда, очевидно, из двух критериев, характеризующихся одной и той же вероятностью а (отклонить правильную в действительности гипотезу Н0), следует принять тот, которому соответствует меньшая ошибка 2-го рода, т.е. большая мощность. Снижения вероятностей обеих ошибок и можно добиться путем увеличения объема выборки.

Правильное решение относительно нулевой гипотезы Н0 также может быть двух видов:

- будет принята  нулевая гипотеза Н0, когда в генеральной совокупности верна нулевая гипотеза Н0; вероятность такого решения 1;

- нулевая гипотеза Н0 будет отклонена в пользу альтернативной Н1, когда в генеральной совокупности нулевая гипотеза Н0 отклоняется в пользу альтернативной Н1; вероятность такого решения 1 ??мощность критерия.

При проведении проверки статистических гипотез в первую очередь приходится решать задачи статистической проверки гипотез о:

1) принадлежности  «выделяющихся» единиц исследуемой  выборочной совокупности генеральной  совокупности;

2) виде распределения  изучаемых признаков;

3) величине средней  арифметической и доли;

4) наличии и  тесноте связи между изучаемыми  признаками;

5) о форме корреляционной  связи.

При проверке гипотез имеется возможность совершить ошибку двоякого рода:

а) ошибка первого рода - проверяемая гипотеза (нулевая гипотеза Н0) является в действительности верной, но результаты проверки приводят к отказу от нее;

б) ошибка второго рода - проверяемая гипотеза в действительности является ошибочной, но результаты проверки приводят к принятию.

В статистике в настоящее время имеется большое число критериев для проверки практически любых гипотез. Притом основные принципы их построения и применения являются общими. Для построения статистического критерия, позволяющего проверить некоторую гипотезу, необходимо следующее:

1) сформулировать  проверяемую гипотезу Н0. Наряду с проверяемой гипотезой формулируется также конкурирующая (альтернативная) гипотеза;

2) выбрать уровень  значимости, контролирующий допустимую  вероятность ошибки первого рода;

3) определить  область допустимых значений  и так называемую критическую  область;

4) принять то  или иное решение на основе  сравнения фактического и критического  значений критерия.

Проверка статистических гипотез складывается из следующих этапов:

- формулируется  в виде статистической гипотезы  задача исследования;

- выбирается статистическая  характеристика гипотезы;

- выбираются испытуемая  и альтернативная гипотезы на  основе анализа возможных ошибочных  решений и их последствий;

- определяются  область допустимых значений, критическая  область, а также критическое  значение статистического критерия (t, F) по соответствующей таблице;

- вычисляется  фактическое значение статистического  критерия;

- проверяется  испытуемая гипотеза на основе  сравнения фактического и критического  значений критерия, и в зависимости  от результатов проверки гипотеза  либо отклоняется, либо не отклоняется.

2. Проверка различных типов  статистических гипотез

2.1 Проверка гипотезы о законе распределения генеральной совокупности с использованием критерия Пирсона

Использование этого критерия основано на применении такой меры (статистики) расхождения между теоретическим F(x) и эмпирическим распределением Fn(x), которая приближенно подчиняется закону распределения. Гипотеза Н0 о согласованности распределений проверяется путем анализа распределения этой статистики. Применение критерия требует построения статистического ряда. 

Таблица критерия Пирсона

 

Число

степеней

свободы k

Уровень значимости

 
 

0,01

0,025

0,05

0,95

0,975

0,99

1

6,6

5,0

3,8

0,0039

0,00098

0,00016

2

9,2

7,4

6,0

0,103

0,051

0,020

3

11,3

9,4

7,8

0,352

0,216

0,115

4

13,3

ПД

9,5

0,711

0,484

0,297

5

15,1

12,8

ПД

1,15

0,831

0,554

6

16,8

14,4

12,6

1,64

1,24

0,872

7

18,5

16,0

14,1

2,17

1,69

1,24

8

20,1

17,5

15,5

2,73

2,18

1,65

9

21,7

19,0

16,9

3,33

2,70

2,09

10

23,2

20,5

18,3

3,94

3,25

2,56

11

24,7

21,9

19,7

4,57

3,82

3,05

12

26,2

23,3

21,0

5,23

4,40

3,57

13

27,7

24,7

22,4

5,89

5,01

4,11

14

29,1

26,1

23,7

6,57

5,63

4,66

15

30,6

27,5

25,0

7,26

6,26

5,23

16

32,0

28,8

26,3

7,96

6,91

5,81

17

33,4

30,2

27,6

8,67

7,56

6,41

18

34,8

31,5

28,9

9,39

8,23

7,01

19

36,2

32,9

30,1

10,1

8,91

7,63

20

37,6

34,2

31,4

10,9

9,59

8,26

21

38,9

35,5

32,7

11,6

10,3

8,90

22

40,3

36,8

33,9

12,3

11,0

9,54

23

41,6

38,1

35,2

13,1

11,7

10,2

24

43,0

39,4

36,4

13,8

12,4

10,9

25

44,3

40,6

37,7

14,6

13,1

11,5

26

45,6

41,9

38,9

15,4

13,8

12,2

27

47,0

43,2

40,1

16,2

14,6

12,9

28

48,3

44,5

41,3

16,9

15,3

13,6

29

49,6

45,7

42,6

17,7

16,0

14,3

30

50,9

47,0

43,8

18,5

16,8

15,0

Информация о работе Контрольная работа по «Статистика»