Шпаргалка по "Статистике"

Автор работы: Пользователь скрыл имя, 10 Февраля 2013 в 13:46, шпаргалка

Краткое описание

Предмет, метод и задачи статистики.
Основные понятия статистической науки: статистическая совокупность, единицы совокупности и их признаки, статистический показатель. Статистическая закономерность и обобщающие статистические показатели. Система показателей.
Статистическое наблюдение, его формы, виды и способы. Программно-методологические и организационные вопросы сбора информации.
Статистическая сводка, ее содержание и задачи, роль в обобщении финансово-экономической информации предприятия.
Метод статистической группировки, его задачи. Виды группировок, их применение в анализе финансово-экономической деятельности предприятия.

Вложенные файлы: 1 файл

статистика билеты.doc

— 338.50 Кб (Скачать файл)

При изучении корреляционной связи показателей анализу подвергаются сравнительно небольшие по составу единиц совокупности. При численности объектов анализа до 30 единиц возникает необходимость испытания параметров уравнения регрессии на их типичность. При этом осуществляется проверка, насколько вычисленные параметры характерны для отображаемого комплекса условий. Применительно к совокупностям, у которых п < 30, для проверки типичности параметров уравнения регрессии используется t-критерий Стьюдента. При этом вычисляют расчетные (фактические) значения t-критерия: для параметра а0

; для параметра а1
, где п – объем выборки,
- среднее квадратическое отклонение результативного признака у от выровненных значений
;
- среднее квадратическое отклонение факторного признака х от общей средней
. Вычисленные значения сравниваются с критическими t, которые определяются по таблице. Параметр признается значимым (существенным) при условии, если tрасч > tтабл. В зависимости от того какой получится результат наша гипотеза принимается или отвергается.

 

 

 

 

 

 

17. Ряды динамики, их виды и особенности, графическое  изображение. Правила построения  динамических рядов. Сопоставимость  уровней рядов динамики. Смыкание уровней динамических рядов, приведение динамических рядов к единому основанию.

Ряд динамики данные представленные  уровнем ряда и промежутком времени к которому они относятся. В каждом ряду динамики имеются два основных элемента: время t и конкретное значение показателя (уровень ряда) у. Уровни ряда – это показатели, числовые значения которых составляют динамический ряд. Время t – это моменты или периоды, к которым относятся уровни. Построение и анализ рядов динамики позволяют выявить и измерить закономерности развития общественных явлений во времени. Эти закономерности не проявляются четко на каждом конкретном уровне, а лишь в тенденции, в достаточно длительной динамике. Выявление основной тенденции в изменении уровней, именуемой трендом, является одной из главных задач анализа рядов динамики. По времени, отраженному в динамических рядах, они разделяются на моментные и интервальные. Моментным рядом динамики называется такой ряд, уровни которого характеризуют состояние явления на определенные даты (повторный счет вычисляеться как  средняя хронологическая).. Интервальным рядом динамики называется такой ряд, уровни которого характеризуют размер явлений за конкретный период времени. позволяет получать ряды динамики более укрупненных периодов, вычисляется как средняя арифметическая простая, взвешенная. Уровни в динамическом ряду могут быть представлены абсолютными, средними или относительными величинами. ряды с равностоящими и неравностоящими уровнями по времени. Ряды динамики могут быть изображены графически. Графическое изображение позволяет наглядно представить развитие явления во времени и способствует проведению анализа уровней. Наиболее распространенным видом графического изображения для аналитических целей является линейная диаграмма, Наряду с линейной диаграммой для графического изображения рядов динамики в целях популяризации широко используются столбиковая диаграмма, секторная диаграмма и т.д. Правила построения рядов динамики: 1. полнота показателей ряда динамики; 2. точность, достоверность показателей ряда динамики; 3. периодизация; 4. сопоставимость показателей ряда динамики по методологии и построению; 5. сопоставимость показателей ряда динамики по территории; 6. сопоставимость показателей ряда динамики  во времени; 7. сопоставимость показателей ряда динамики  по одинаковому кругу охватываемых объектов; 8. совокупность показателей единицы измерения.

 

 

 

18. Аналитические  показатели  ряда динамики: абсолютный  прирост, темп роста и прироста, абсолютное значение одного процента  прироста. Средние показатели в рядах динамики. Коэффициенты опережения (отставания) рядов динамики.

 

Все эти показатели могут быть базисными  и цепными, базисное когда уровень  данного периода сравнивается с  первым, либо цепное когда сравнивается 2 соседних уровня.

Важнейшим статистическим показателем  анализа динамики является абсолютный прирост (сокращение), т.е. абсолютный прирост, характеризующее увеличение или уменьшение уровня ряда за определенный промежуток времени. Абсолютный прирост с переменной базой называют скоростью роста. Коэффициент роста- показывает во сколько раз сравниваемый уровень, больше уровня  с которым производиться сравнение.

темпы роста .

 

Темп роста-100%=темп прироста

 

Темп роста- показывает на сколько % сравниваемый уровень больше или меньше уровня взятого за базу. Чтобы правильно оценить значение полученного темпа прироста, его рассматривают в сопоставлении с показателем абсолютного прироста. Результат выражают показателем, который называют абсолютным значением (содержанием) одного процента прироста и рассчитывают как отношение абсолютного прироста к темпу прироста за этот период времени, %:.

 

 

 

 

 

19. Методы выявления  основной тенденции развития  уровней рядов динамики. Прогнозирование  уровней динамических рядов в  финансово-экономическом анализе.

Основной тенденцией развития (ТРЕНДОМ) называется плавное и устойчивое изменение уровня явления во времени, свободное от случайных колебаний. Задача состоит в том, чтобы выявить общую тенденцию в изменении уровней ряда, освобожденную от действия различных случайных факторов. С этой целью ряды динамики подвергаются обработке методами укрупнения интервалов, скользящей средней и аналитического выравнивания. Наиболее простым методом изучения основной тенденции в рядах динамики является укрупнение интервалов. Данный метод основан на укрупнении периодов времени, к которым относятся уровни ряда динамики (одновременно уменьшается количество интервалов. Выявление основной тенденции может осуществляться также методом скользящей (подвижной) средней. Сущность его заключается в том, что исчисляется средний уровень из определенного числа, обычно нечетного (3, 5, 7 и т.д.), первых по счету уровней ряда, затем – из такого же числа уровней, но начиная со второго по счету, далее – начиная со среднего и т.д. минус укорачивание и потеря информации. Основным содержанием метода аналитического выравнивания в рядах динамики является то, что общая тенденция развития рассчитывается как функция времени: , где - уровни динамического ряда, вычисленные по соответствующему аналитическому уравнению на момент времени t. Простейшими моделями, выражающими тенденцию развития, являются: линейная функция – прямая , где а01 – параметры уравнения, t – время; показательная функция ; степенная функция – кривая второго порядка (парабола) . Расчет параметров функции обычно производится методом наименьших квадратов, в котором в качестве решения принимается точка минимума суммы квадратов отклонений между теоретическими и эмпирическими уровнями: . Выравнивание по прямой применяется в тех случаях, когда абсолютные прироста практически постоянны, т.е. когда уровни изменяются в арифметической прогрессии (или близко к ней). Выравнивание по показательной функции используется в тех случаях, когда ряд отражает развитие в геометрической прогрессии, т.е. когда цепные коэффициенты роста практически постоянны. Выравнивание ряда динамики по прямой: . Параметры а0, а1 согласно методу наименьших квадратов находятся решением следующей системы нормальных уравнений: , где у – фактические (эмпирические) уровни ряда; t – время (порядковый номер периода или момента времени). Расчет параметров значительно упрощается, если за начало отсчета времени (t = 0) принять центральный интервал (момент). Т.о., система принимает вид . Таким образом, получаем: ; .

 

 

 

20. Методы  выявления сезонных колебаний. Индексы сезонности. Их применение в анализе и прогнозировании экономических процессов.

В широком понимании к сезонным колебаниям относят все явления, которые обнаруживают в своем  развитии отчетливо выраженную закономерность внутригодовых изменений. Периодические колебания, которые имеют определенный и постоянный период, равный годовому промежутку, носят название сезонные колебания или сезонные волны, а динамический ряд в этом случае называют сезонным рядом динамики. Характеризуют сезонные колебания показателями, которые называются индексами сезонности. Индексами сезонности являются процентные отношения фактических внутригрупповых уровней к теоретическим уровням, выступающим в качестве базы сравнения. Совокупность индексов сезонности образует  сезонную волну. Для того, чтобы выявить устойчивую сезонную волну, на которой не отражались бы случайные условия одного года, индексы сезонности вычисляют по данным за несколько лет (не менее трех), распределенным по месяцам. Для каждого месяца рассчитывается средняя величина уровня , затем вычисляется среднемесячный уровень для всего ряда . После чего определяется показатель сезонности волны – индекс сезонности Is как процентное отношение средних для каждого месяца к общему среднемесячному уровню ряда, %: . Для наглядного представления сезонной волны индексы сезонности изображают в виде графика. Когда уровень проявляет тенденцию к росту или снижению, то отклонения от постоянного среднего уровня могут исказить сезонные колебания. В таких случаях фактические данные сопоставляют с выравненными, т.е. полученными аналитическим выравниванием.

 

 

 

 

21. Понятие  об экономических индексах, сфера  их применения. Классификация индексов. Индивидуальные индексы, их взаимосвязи.

.Индексом в статистике называют относительный показатель, характеризующий изменение величины какого-либо явления .Индексируемая величина – значение признака статистической совокупности, изменение которой является объектом изучения. Индексы классифицируются по трем признакам: по содержанию изучаемых объектов; степени охвата элементов совокупности; методам расчета общих индексов. По содержанию изучаемых величин количественных и индексы качественных показателей. Индексы количественных показателей – индексы физического объема промышленной и сельскохозяйственной продукцииИндексы качественных показателей – индексы курса валют, цен. По степени охвата единиц совокупности индексы делятся на два класса: индивидуальные и общие. Индивидуальные индексы служат для характеристики изменения отдельных элементов сложного явления. Общий индекс отражает изменение всех элементов сложного явления. По методам расчета различают индексы агрегатные и средние, Любые общие индексы могут быть построены двумя способами: как агрегатные и как средние из индивидуальных. Последние в свою очередь делятся на средние арифметические и средние гармонические. Агрегатные индексы качественных показателей могут быть рассчитаны как индексы переменного состава и индексы постоянного (фиксированного) состава. Общие индексы дают обобщающую цифровую характеристику, и при помощи общих индексов обобщаются элементы совокупности с непосредственно несоизмеримыми величинами. Основной формой общих индексов является агрегатная форма. Индекс агрегатной формы строится по методу сумм. Агрегатная форма применяется, если мы имеем данные поэлементные в отчетном и базисном периоде. Индекс товарооборота: ; индекс физического объема продукции: ;

 

 

 

 

 

22. Агрегатный индекс как форма общего индекса. Выбор весов при построении общих индексов. Индексы цен Г. Паше и Э. Ласпейреса, их практическое применение.

является наиболее распростр. Формой индекса. Поскольку этот индекс характеризует изменение цен, индексируемой величиной в нем будет цена товара. При построении индекса цен в качестве весов индекса обычно берут количество товаров, проданных в текущем (отчетном) периоде. Агрегатный индекс цен с отчетными весами впервые предложен Пааше: формула агрегатного индекса цен Пааше , где - фактическая стоимость продукции (товарооборот) отчетного периода; Индекс цен Пааше показывает, во сколько раз возрос (уменьшился) в среднем уровень цен на массу товара, реализованную в отчетном периоде, или сколько процентов составляет его рост (снижение) в отчетном периоде по сравнению с базисным периодом.

Если индекс цен рассчитывается по продукции  базисного периода, для расчета  используют формулу агрегатного  индекса цен Ласпейреса: . Эти два агрегатных индекса цен (Пааше и Ласпейреса) не идентичны.. Индекс Пааше характеризует изменение цен отчетного периоде по сравнению с базисным по товарам, реализованным в отчетном периоде, и фактическую экономию (перерасход) от изменения цен, т.е. индекс цен Пааше показывает, на сколько товары в отчетном периоде стали дороже (дешевле), чем в базисном. индекс цен Ласпейреса показывает, во сколько раз товары базисного периода подорожали (подешевели) из-за изменения цен на них в отчетном периоде. Поэтому применение формулы Ласпейреса ограничено особыми условиями исследования.

В тех случаях, когда неизвестны значения p0 и q1 , но дано произведение p1q1 (товарооборот текущего периода) и индивидуальные индексы цен , а сводный индекс должен быть исчислен с отчетными весами, - применяется средний гармонический индекс цен. Причем индивидуальные индексы должны быть взвешены таким образом, чтобы средний гармонический индекс совпал с агрегатным. Из формулы определяется неизвестное значение цены , подставляется в знаменатель агрегатной формулы и получается средний гармонический индекс цен, тождественный формуле Пааше: . Весами индивидуальных индексов в этом индексе служат стоимость отдельных видов продукции отчетного периода в ценах того же периода p1q1. Если из индивидуального индекса цен выразить цену отчетного периода р10ip и подставить ее в числитель агрегатного индекса цен Ласпейреса, то получится средний арифметический индекс цен, тождественный формуле Ласпейреса: . Весами осредняемых индивидуальных индексов в этом случае служит объем товарооборота в базисном периоде p0q0.

 

 

 

 

 

 

 

 

23. Преобразование  агрегатных индексов в средние.  Средние арифметический и гармонический  индексы. Их применение в изучении  динамики цен и физического  объёма производства.

если неизвестны количества произведенных отдельных  продуктов в натуральных измерителях, но известны индивидуальные индексы и стоимость продукции базисного периода (p0q0), можно определить средний арифметический индекс физического объема продукции. Исходной базой построения служит агрегатная форма: . Из имеющихся данных можно получить только знаменатель этой формулы. Для нахождения числителя используется формула индивидуального индекса объема продукции, из которой следует, что q1=q0iq. Подставляя данное выражение в числитель агрегатной формы, получаем общий индекс физического объема в форме среднего арифметического индекса физического объема продукции, где весами служит стоимость отдельных видов продукции в базисном периоде (q0p0): . Если известные данные позволяют вычислить только числитель агрегатного индекса физического объема, то, аналогично выражая продукцию базисного периода как , производим замену в знаменателе. В результате получаем общий индекс физического объема в форме среднего гармонического взвешенного индекса физического объема продукции, где весами служит стоимость продукции отчетного периода в базисных ценах (q1p0): . В форме средней гармонической взвешенной индекс физического объема используется только в аналитических целях. Т.о., применение той или иной формулы индекса физического объема (агрегатного или среднего арифметического или среднего гармонического) зависит от имеющихся в нашем распоряжении конкретных данных и цели исследования.

 

 

 

 

 

 

 

24. Индексы  средних уровней качественных показателей. Индексы переменного, постоянного состава и структурных сдвигов. Определение абсолютных приростов (снижения) средних уровней за счёт отдельных факторов.

На динамику качественных показателей, уровни которых  выражены средними величинами, оказывает влияние изменение структуры изучаемого явления. Под изменением структуры явления понимается изменение доли отдельных единиц совокупности, из которых формируются средние, в общей их численности. При изучении динамики средней величины задача состоит в определении степени влияния двух факторов: изменений значения осредняемого показателя и изменений структуры явления. Эта задача решается с помощью индексного метода, т.е. путем построения системы взаимосвязанных индексов, в которую включаются три индекса: переменного состава, постоянного состава и структурных сдвигов.Индекс переменного состава представляет собой отношение двух взвешенных средних с изменяющимися (переменными) весами, показывающее изменение индексируемой средней величины. Для любых качественных показателей индекс переменного состава можно записать в общем виде: , где х1, х2 – уровни осредняемого показателя в отчетном и базисном периодах соответственно; f1, f2 – веса (частоты) осредняемого показателя в отчетном и базисном периодах соответственно. Чтобы элимитировать влияние изменения структуры совокупности на динамику средней величины, берут отношение средних взвешенных с одними и теми же весами (как правило на уровне отчетного периода). Индекс, характеризующий динамику средней величины при одной и той же фиксированной структуре совокупности, носит название индекса постоянного (фиксированного) состава и исчисляется в общем виде: . Индекс постоянного состава показывает, как в отчетном периоде по сравнению с базисным изменилась средняя величина показателя по какой-либо однородной совокупности за счет изменения только самой индексируемой величины, т.е. когда влияние структурного фактора устранено. Для измерения влияния только структурных изменений на исследуемый средний показатель исчисляют индекс структурных сдвигов, как отношение среднего уровня индексируемого показателя базисного периода, рассчитанного на отчетную структуру, к фактической средней этого показателя в базисном периоде: .

Информация о работе Шпаргалка по "Статистике"