Автор работы: Пользователь скрыл имя, 02 Апреля 2013 в 14:22, реферат
В последние десятилетие стало совершенно очевидным, что дальнейшее интенсивное развитие современной энергетики и транспорта ведет человечество к крупномасштабному экологическому кризису. Стремительное сокращение запасов ископаемого топлива будет принуждать индустриально развитые страны расширять сеть атомных энергоустановок, которые во все возрастающей степени станут повышать опасность их эксплуатации.
На космических станциях ЭВГ может заменить гироскопы и традиционные солнечные батареи, а также обеспечить ориентационные двигатели эффективным, многократно более дешевым и безопасным топливом.
Утилизация избыточного
тепла в угольных шахтах ликвидирует
острую проблему безопасности угледобычи,
а подземное выжигание остатков
угля неперспективных шахт и использование
полученного тепла на производство
водородного топлива и
Различные модификации
мощностного ряда ЭВГ могут найти
свое применение в малой стационарной
и мобильной энергетике, особенно
в сфере энергообеспечения
Применение изобретения
на действующих тепловых и атомных
электростанциях существенно
В черной металлургии водород заменит дорогостоящий и дефицитный кокс, позволит вести более эффективный процесс получения стали, отапливать печи и применять в конвекторах побочно выделяющийся при разложении воды кислород, а не производить его для этой цели специально. При этом трубы металлургических заводов прекратят выбрасывать в атмосферу сотни тысяч тонн углекислоты.
Особый интерес изобретение представляет для специалистов, занимающихся проблемами сепарации различных неорганических веществ, например, обогащением урана. Предлагаемый способ позволяет просто и эффективно непрерывно разделять изотопы U235 и U238 , одновременно выделяя их из водного раствора в виде металлического порошка, то есть объединить эти два различных процесса в одном высокопроизводительном малогабаритном аппарате.
Простота конструкции
ЭВГ для промышленных предприятий
дает возможность в течение
1) Q + C + SiO2 → Si + CO2 ↑ + H2O — восстановление кремния углеродом
2) Si + 2H2O → SiO2 + 2H2↑ + Q — получение водорода
3) 2H2 + O2 → 2H2O + Q — сжигание водорода
Используя источник тепла (например, солнечную печь) восстанавливается кремний из окисла (реакция 1). Кремний представляет собой прекрасное ЭАВ, не требующее специальных условий хранения. Он доставляется к месту необходимого получения энергии (в том числе на транспортный двигатель). В специальном реакторе происходит реакция вытеснения водорода (реакция 2). И наконец водород поступает в двигатель в качестве топлива. Образовавшийся в результате второй реакции оксид кремния можно использовать многократно.
1 – реактор; 2 - поршневой двигатель внутреннего сгорания; 3 – конденсатор; 4 - радиатор охлаждения; 5 - побудитель расхода; 6 - побудитель расхода; 7 - побудитель расхода; 8 - охладитель кремния.
Заключение
Энергетика является одной из основных отраслей народного хозяйства, по уровню ее развития и потенциальным возможностям можно судить об экономической мощи страны.
Нынешнюю энергетическую
ситуацию в мире можно назвать
относительно благополучной благодаря
наличию больших запасов
После мирового энергетического кризиса были приняты меры по сохранению и рациональному использованию энергии, что способствовало значительному снижению энергоемкости материального производства В результате общая энергоемкость единицы ВВП в промышленно развитых странах с 1973 г до начала 90-х годов снизилась на 22%, при этом нефтеемкость - почти на 38%.
Рост инвестиций не в производство электроэнергии, а в энергосберегающие технологии способствовал сокращению потребления энергии в промышленно развитых странах, что в свою очередь привело к уменьшению негативного воздействия на окружающую среду.
Кризисные явления в развитии мировой энергетики, которые проявились в середине 2000 г, по нашему мнению, могут вызвать новый виток в росте энергосбережений и изменений в структуре энергопотребления.
За прошедшие три
десятилетия структура
Несмотря на почти трехкратное увеличение производства энергии за счет использования водных и ядерных источников, их доля в мировом энергобалансе остается незначительной и составляла в конце 90-х годов соответственно примерно 5% и 6%.
При современных темпах роста потребления ископаемых видов топлива запасов нефти хватит минимум на 75 лет, природного газа - более чем на 100 лет, угля - более чем на 200 лет.
По прогнозу Международного энергетического агентства (МЭА), при сохранении современных тенденций в мировой энергетике в период до 2020 г глобальное потребление первичных энергоресурсов может возрасти на 65% Доля ископаемых видов топлива в мировом энергобалансе к 2020 году должна сократиться до 76% и к 2050 г - до 45%.
Надежды, которые возлагались на новые или альтернативные источники энергии, такие как энергия солнца, ветра, биоэнергия, геотермальная энергия и другие, так и остаются пока нереализованными, не внеся кардинальных изменений в структуру мирового энергобаланса Удельный вес новых или альтернативных источников энергии, исключая гидроэлектроэнергию, в ее глобальной выработке к 2020 г будет составлять около 2%.
В рамках общей энергетической стратегии страны Европейского союза поставили задачу повысить долю электроэнергии, получаемой из возобновляемых источников энергии к 2010 г до 22%.
Список используемых источников
1) Варшавский И.Л. «Энергоаккумулирующие вещества и некоторые принципы их использования для транспорта, энергетики и промышленности». - М.:Наука,1970. - 51 стр.
2) http://www.kurginyan.ru/publ.
3) Глобальное потепление: Доклад Гринпис / Под ред. Дж.Леггетта. Пер. с англ. — М.:Изд-во МГУ, 1993. — 272 стр.
5) http://www.mamok.mesi.ru/
6) http://www.infoatom.ru/Win/
7) Журнал "Фактор"№ 5 - 2001 г.