Автоматизация процесса производства

Автор работы: Пользователь скрыл имя, 12 Декабря 2012 в 22:05, реферат

Краткое описание

Управление любым технологическим процессом или объектом в форме ручного или автоматического воздействия возможно лишь при наличии измерительной информации об отдельных параметрах, характеризующих процесс или состояние объекта. Параметры эти весьма своеобразны. К ним относятся электрические (сила тока, напряжение, сопротивление, мощность и другие), механические (сила, момент силы, скорость) и технологические (температура, давление, расход, уровень и другие) параметры, а также параметры характеризующие свойства и состав веществ (плотность, вязкость, электрическая проводимость, оптические характеристики, количество вещества и т.д.).

Содержание

Введение
Краткое описание технологического процесса.
Описание схемы автоматизации с обоснованием выбора приборов и технических средств.
Сводная спецификация на выбранные приборы.
Специальное задание.
Использованная литература.

Вложенные файлы: 1 файл

Автоматизация технологических процессов.doc

— 131.50 Кб (Скачать файл)

СОДЕРЖАНИЕ

  1. Введение
  2. Краткое описание технологического процесса.
  3. Описание схемы автоматизации с обоснованием выбора приборов и технических средств.
  4. Сводная спецификация на выбранные приборы.
  5. Специальное задание.
  6. Использованная литература.

1. ВВЕДЕНИЕ

Управление любым технологическим процессом или объектом в форме ручного или автоматического воздействия возможно лишь при наличии измерительной информации об отдельных параметрах, характеризующих процесс или состояние объекта. Параметры эти весьма своеобразны. К ним относятся электрические (сила тока, напряжение, сопротивление, мощность и другие), механические (сила, момент силы, скорость) и технологические (температура, давление, расход, уровень и другие) параметры, а также параметры характеризующие свойства и состав веществ (плотность, вязкость, электрическая проводимость, оптические характеристики, количество вещества и т.д.). Измерения параметров осуществляется с помощью самых разнообразных технических средств, обладающих нормированными метрологическими свойствами. Технологические измерения и измерительные приборы используются при управлении (ручном или автоматическом) многими технологическими процессами в различных отраслях народного хозяйства.

Средства  измерений играют важную роль при  построении современных автоматических систем регулирования отдельных технологических параметров и процессов (АСР) и особо автоматизированных систем управления технологическими процессами (АСУТП), которые требуют представления большого количества необходимой измерительной информации в форме, удобной для сбора, дальнейшего преобразования, обработки и представления ее, а в ряде случаев для дистанционной передачие в выше ниже стоящие уровни иерархической структуры управления различными производствами.

В основе измерений  параметров и физических величин лежат различные физические явления и закономерности. Измерительные схемы с использованием современных достижений микроэлектронной техники: микропроцессорных схем, твердых или полупроводниковых электрохимических элементов и другие.

2. КРАТКОЕ ОПИСАНИЕ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА

В свеклоперерабатывающем отделении осуществляется извлечение сахара из растительного сырья. Сахарную свеклу, поступающую из моечного отделения, измельчают в стружку с помощью  свеклорезок и падают в диффузионный аппарат. Здесь в процессе взаимодействия свекольной стружки с водой, сахар вымывается из стружки и переходит в воду. Полученный сахарный раствор, называемый диффузионным соком, откачивают насосами на дальнейшую переработку. Обессахаренная стружка, называемая жомом, удаляется из аппарата. Отжатая из жома вода, называется жомопрессовой водой, возвращается в аппарат.

В свеклоперерабатывающем отделении кроме диффузионного  аппарата размещено различное вспомогательное  оборудование: аппараты для подготовки и подаче воды, свеклорезки, подогреватели, сборник диффузионного сока, транспортеры и другое. Диффузионные аппараты являются основным оборудованием, определяющим работу всего свеклоперерабатывающего отделения.

Эффективность работы диффузионного аппарата характеризуется выходными параметрами, к которым относятся содержание сахара в диффузионном соке и удаленном и удаленном из аппарата жомом. Характер протекания процесса обессахаривания, распределения концентрации сахара в различных тыках аппарата и следовательно, выходные параметры зависят от многих факторов.

К ним относятся: расход свекольной стружки и воды, их качество и температура, расход греющего аппарата, частота вращения транспортирующих органов, удельная нагрузка аппаратов, уровень и температура сокостужной  смеси и ряд других, влияние которых трудно учесть.

Для обеспечения  наилучших условий протекания процесса извлечения сахара важное значение имеет: автоматическое дозирование воды подаваемое в аппарат, автоматическое управления нагревом сокостужной смеси и загрузкой аппарата. Недостаток воды привод к повышенному содержанию сахара в жоме, а избыток – к разжижжению диффузионного сока. При недогреве циркулирующего сока и сокостужной смеси значительное время затрачивается на ошпаривание, а время и скорость активной диффузии сокращается. При перегреве значительно уменьшается качество диффузионного сока, затрудняется перемещение стружки и протекание воды. Недогрузка или перегрузка аппарата стружкой вызывает плохое смывание стружки соком. Время активной диффузии и производительности аппарата определяются продолжительность контакта свекольной стружки с соком и условиями ее перемещения. В процессе диффузирования указанные параметры можно косвенно измерить по уровню сокостружечной смеси и нагрузки электродвигателей привода волов.

На основании  рассмотренных особенностей функционирования диффузионных аппаратов можно сформулировать основные требования к их автоматизации.

3. ОПИСАНИЕ  СХЕМЫ АВТОМАТИЗАЦИИ С ОБОСНОВАНИЕМ  ВЫБОРА ПРИБОРОВ И ТЕХНИЧЕСКИХ  СРЕДСТВ

По каналу автоматического регулирования концентрации диффузионного сока в наклонном диффузионном аппарате расстояние между тыкой измерения выходной величины и тыкой введения регулирующего воздействия – изменение расхода воды составляет почти 20 минут. В результате этого время чистового запаздывания определяемого временем преодолением водой указанного расстояния, заполненного движущейся навстречу ей стружке, достигает 20-ти минут, а постоянная времени объекта по этому каналу превышает 20 минут. Эффективное автоматическое регулирование объектов с неблагоприятными динамическими свойствами возможно лишь путем построения многоконтурных систем регулирования с использованием дополнительной оперативной информации о ходе процесса обессахаривания стружки.

Производительность  диффузионных аппаратов и полнота извлечения сахара из стружки в значительной степени определяются скоростью перемещения стружки и ее массой, приходящейся на единицу объема корпуса, называемой удельной нагрузкой. Непосредственное регулирование этих параметров, т.е. скорости перемещения стружки и удельной нагрузки, в настоящее время не представляется возможным из-за отсутствия измерительных приборов, поэтому для стабилизации принимают косвенные способы. Удельную нагрузку оценивают по величине тока электродвигателя приводов транспортирующих органов и регулируют путем изменения частоты их вращения или расхода свекловичной стружки. Время чистого запаздывания и инерционность наклонного диффузионного аппарату по каналу регулирования удельной нагрузки соразмерной с их значениями в канале стабилизации концентрации диффузионного сока.

Задача поддержания  температурного режима осложняется  большой массой обогреваемой сокостружечной смеси. Чистое запаздывание здесь составляет 10-15 минут, а постоянная времени до 30 минут. На входе объекта часто возникают глубокие возмущения по расходу стружки.

Рассмотрим  схему автоматизации ротационного диффузионного аппарата А1-ПДС-20.

Автоматическое  регулирование удельной нагрузки аппарата осуществляются путем изменения  частоты вращения, а следовательно, и производительности одной из свеклорезок. Величина удельной нагрузки аппарата характеризуется МОКом электродвигателей хвостовых половин транспортирующих шнеков. Токи электродвигателей измеряются с помощью калиброванных пунктов 2б и 2в типа 75 ШС автоматическими потемциометсекциями, которые с достаточной для практики точностью можно представить как объекты с сосредоточенными параметрами. К каждой из секций подводится греющий пар. Температуру сокоструйной смеси регулируют обособленно в каждой из первых пяти секций путем воздействия на расход греющего пара.

Датчиками температуры  служат медные термометры сопротивления 8а, 9а, 10а, 11а и 12а типа ТСМ-50Н. Вторичные приборы – автоматические мосты 8б, 9б, 10б, 11б и 12б типа   КСМ-3 воспринимают сигнал об изменении температуры в соответствующих секциях аппарата и преобразуют их с помощью встроенных пневматических пропорционально-интегральных регулирующих блоков. Под действием выходных сигналов регулирующих блоков клапаны 8д, 9д, 10д, 11д и 12д типа 25430 НЖ изменяют расход пара, подводимого соответственно к пятой, четвертой, третьей, второй и первой секциям. Позициометры 8г, 9г, 10г, 11г и 12г типа ПР10-100 увеличивают быстродействие и определяют статические характеристики регулирующих клапанов.

Необходимая продолжительность контакта свекольной стружки с соком достигается путем автоматической стабилизации уровня сока в головной части наклонного диффузионного аппарата. Уровень измеряется пьезометрическим способом с помощью дифемонометра 7е типа ДС-П. Пневматический сигнал, характеризующий уровень сока, поступает от датчика 7е на вторичный прибор 7з типа ПВ10.1Э и статический регулирующий блок 7и типа ПР 2.8. Применение пропорционального закона регулирования обусловлено динамическими свойствами объекта, который по каналу «расход сока-уровень» является интегрирующим звеном. Регулирующее воздействие-изменение расхода диффузионного сока, отбираемого из аппарата, вводится с помощью регулирующего клапана 7я типа 25ч30НЖ, установленного на трубопроводе откачки диффузионного сока.

4. СВОДНАЯ  СПЕЦИФИКАЦИЯ НА ВЫБРАННЫЕ ПРИБОРЫ

Примечание

                                     

Количество

5

5

1

1

1

1

2

2

1

2

2

2

1

1

5

10

1

2

5

Тип прибора

ТСМ-5071

КСМ2-002

ДМ-23753

КСД-2-040

ДЭ-2

ЭРСУ-2

75 ШС

КСП-3

РПУ-У-28

5РИМ

ПР 3.34

ПР 2.8

ПМТ

Ш69002

ПА-400

ПКЕ-222-2

3ВП-220

ПКЕ-121-1

АС-220

Наименование и характеристика прибора

Медный термопреобразователь сопротивления. Градуировка шкалы  – 23 Предел измерений – 50ч+1500С

Уравновешенный, малогабаритный показывающий самопишущий мост. Класс  точности по записи – 1,0%

Дифемонометр. Погрешность +-1,5%

Уравновешенный малогабаритный мост. Класс точности +-1,0%

Датчик уровня. Статическое  давление – 25МПа

Сигнализатор уровня кондуктометрический. Погрешность +-1,5 мин. От момента срабатывания

Калиброванный пункт

Автоматический потенциометр. Класс точности +-1,5%

Регулирующий прибор. Точность регулирования +-1,5%

Индукционный расходомер

Регулирующий блок

Регулирующий прибор. Точность регулирования +-1,5%

Переключатель

Логометр.  Погрешность  +-2,5%

Магнитный пускатель  с защитой от перегрузок ТРН-10

Кнопочный пост управления двухштриховный I=5А, U=220В

Звонок громкого боя U=220В

Одноштифтовый кнопочный  пост управления I=5А

Сигнальная арматура с лампой РНЦ-220-10

Место установки

По месту

На щите

По месту

На щите

По месту

На щите

По месту

На щите

-//-

По месту

На щите

На щите

-//-

-//-

По месту

На щите

В зале

На щите

На щите

Регулируемый или контролируемый параметр

Температура

Температура

Расход

-//-

Уровень

Уровень

Расход

-//-

Расход

Расход

-//-

Уровень

Температура

-//-

Управление

Управление

Сигнал перед пуском

-//-

Сигнализация

Позиция

16а, 17а, 18а, 19а, 20а

8б, 9б, 10б,11б, 12б

27а

27б

2б, 3в

2б, 2е

3а, 4а

3б, 4б

7з, 7и

35а

35б

2ва+32а

2Вб,в+32бв

3ба

3Бв, 36Бв

2Вг-32г


 

5. СПЕЦИАЛЬНОЕ  ЗАДАНИЕ ШИФР: 707-ХТ-97-РАСХОД

Для измерения расхода и количества жидкости, пара, газа в отрасли в основном используют общепромышленные приборы.

Счетчики. Это приборы, предназначенные для количественного отделения массы или объема вещества, прошедшего через счетчик. По принципу действия они делятся на объемные и скоростные. В молочно промышленности наибольшее распространение получили объемные счетчики, принцип действия которых на том, что измеряемое количество молока, заполняя некоторый объем (измерительную камеру), вытесняется вращающимся рабочим органом (шестернями), соединенным со счетным механизмом. В зависимости, характеризующую работу объемных счетчиков описывается уравнением V=nV.

В корпусе счетчика (рис.1) установлены две овальные шестерни, вращающиеся под давлением жидкости, поступающей во входную часть камеры. При повороте шестерни отмеренный в сердцеобразном пространстве объем молока вытесняется из камеры. За один полный оборот


овальных  шестерен через счетчик

вытесняется четыре объема жидкости,

равных объему серпообразного


пространства. Одна из шестерен

соединена со счетным механизмом,

а так как  частота вращения шестерен

зависит от количества протекающей жидкости,

то счетное  устройство регистрирует измеренное количество.

Расходомеры. Приборы для определения расхода, т.е. измеряющие количество вещества, протекающего через данное сечение трубопровода за известный интервал времени, называющийся расходомерами. С их помощью измеряемый массовый (кг/с) или объемный расход (м3/с) жидкости или газа. По принципу действия различают расходомеры переменного перепада давления и постоянного перепада давления.

Расходомеры переменного перепада давления. Принцип действия расходомеров основан на том, что если в трубопроводе, по которому протекает вещество, устанавливают устройство, создающее местное сужение потока, то вследствие перехода части потенциальной энергии давление в кинетическую среднюю скорость потока в суженном сечении повышается, в результате чего статическое давление в этом сечении становится меньше статического давления перед сужающим устройством.

Разность  давлений (перепад давления) тем больше чем больше расход вещества. Следовательно, перепад давления может служить мерой расхода вещества.

В измерительной  техники в качестве служащих устройств  используют диафрагмы и сопла. Наиболее широкое применение нашла стандартная диафрагма, представляющая собой тонкий диск с отверстием круглого сечения (рис.2).



 

 

 

 

 

 

При протекании жидкости по трубопроводу сужение потока начинается по диафрагме, а на некотором  расстоянии после нее действием сил инерции сечение потока становится минимальным. Далее поток постепенно расширяется до полного сечения трубопровода. Перед диафрагмой и после нее образуются зоны завихрения, на которые затрачивается часть энергии, вследствие чего наблюдается потеря давления.

Информация о работе Автоматизация процесса производства