Автор работы: Пользователь скрыл имя, 02 Июня 2013 в 22:21, курсовая работа
Диаграмма железо – углерод должна распространяться от железа до углерода. Железо образует с углеродом химическое соединение: цементит – Fe3C. Каждое устойчивое химическое соединение можно рассматривать как компонент, а диаграмму – по частям. Так как на практике применяют металлические сплавы с содержанием углерода до 5 %, то рассматриваем часть диаграммы состояния от железа до химического соединения цементита, содержащего 6,67 % углерода.
Отливки коленчатых валов массой до 2..3 т, взамен кованых валов из стали, обладают более высокой циклической вязкостью, малочувствительны к внешним концентраторам напряжения, обладают лучшими антифрикционными свойствами и значительно дешевле.
Обозначаются индексом ВЧ (высокопрочный чугун) и числом, которое показывает значение предела прочности, умноженное на ВЧ 100.
3.6. Ковкий чугун
Ковкий чугун имеет выделения графита в виде компактных образований неправильной формы или хлопьев. Получается он путем специального отжига отливки из малоуглеродистого белого чугуна. Свое название ковкий чугун получил за более высокие пластические свойства по сравнению с серым чугуном, хотя свободной ковке (без оправки) он, конечно, никогда не подвергался.
Хорошие свойства у отливок
обеспечиваются, если в процессе кристаллизации
и охлаждения отливок в форме
не происходит процесс графитизации.
Чтобы предотвратить
Ковкие чугуны содержат: углерода – 2,4…3,0 %, кремния – 0,8…1,4 %, марганца – 0,3…1,0 %, фосфора – до 0,2 %, серы – до 0,1 %.
Формирование окончательной структуры и свойств отливок происходит в процессе отжига, схема которого представлена на рис. 11.4.
Рис. 16. Отжиг ковкого чугуна.
Отливки выдерживаются в печи при температуре 950…1000° С в течении 15…20 часов. Происходит разложение цементита:.
Структура после выдержки состоит из аустенита и графита (углерод отжига). Затем следует охлаждение до температуры стабильного эвтектоидного превращения (примерно до 760° С). При медленном охлаждении в интервале 760…720° С, происходит разложение цементита, входящего в состав перлита, и структура после отжига состоит из феррита и углерода отжига - получается ферритный ковкий чугун (режим а, рис. 16). При относительно быстром охлаждении (режим б, рис. 16) вторая стадия полностью устраняется, и получается перлитный ковкий чугун. Структура чугуна, отожженного по режиму в (рис.16), состоит из перлита, феррита и графита отжига (получается феррито-перлитный ковкий чугун). Отжиг является длительной 70…80 часов и дорогостоящей операцией. В последнее время, в результате усовершенствований, длительность сократилась до 40 часов.
По механическим и
технологическим свойствам
Отливки из ковкого чугуна применяют для деталей, работающих при ударных и вибрационных нагрузках. Из ферритных чугунов изготавливают картеры редукторов, ступицы, крюки, скобы, хомутики, муфты, фланцы. Из перлитных чугунов, характеризующихся высокой прочностью, достаточной пластичностью, изготавливают вилки карданных валов, звенья и ролики цепей конвейера, тормозные колодки.
Обозначаются индексом КЧ (ковкий чугун) и двумя числами, первое из которых показывает значение предела прочности, умноженное на , а второе – относительное удлинение - КЧ 30 - 6.
4. Стали
4.1. Влияние углерода
При комнатной температуре сталь состоит из смеси мягкого и пластичного феррита и очень твердого и хрупкого цементита. Поэтому увеличение процентного содержания С в стали, вызывая увеличение количества цементитной фазы, естественно, приводит к росту твердости и прочности и к снижению пластичности и вязкости стали. Однако общий ход изменения механических свойств и значения конкретных величин различных свойств зависят также от сочетания и дисперсности фаз. Как известно, структура доэвтектоидной стали после медленного охлаждения состоит из избыточного феррита и перлита, а заэвтектоидной - из вторичного избыточного цементита и перлита. Структура эвтектоидной сталь (0,8 % С) состоит из одного перлита. Повышение содержания углерода в стали до 0,8 % вызывает увеличение количества перлита и уменьшение феррита, а при дальнейшем увеличении С (> 0,8%) - к появлению наряду с перлитом вторичного цементита.
Влияние содержания углерода на механические свойства стали показано на рис. 17. Следует обратить внимание на изменение прочности. Прочность повышается до содержания углерода около 1 %, а затем она уменьшается. Это объясняется появлением в структуре заэвтектоидной стали хрупкого вторичного цементита в виде тонкой оболочки вокруг перлитных зерен, что и вызывает преждевременное разрушение стали при растяжении. Приведенные на рис. 9 цифры значений механических свойств являются средними и могут колебаться в ту и другую сторону в зависимости от содержания примесей и условий охлаждения стали.
Рис.17. Влияние углерода на свойства сталей
Повышаются
Углерод оказывает влияние и на технологические свойства. Повышение содержания углерода ухудшает литейные свойства стали (используются стали с содержанием углерода до 0,4 %), обрабатываемость давлением и резанием, свариваемость. Следует учитывать, что стали с низким содержанием углерода также плохо обрабатываются резанием.
4.2. Примеси в сталях
В сталях всегда присутствуют постоянные, вредные и случайные примеси, т.к. сталь является многокомпонентным сплавом.
Сера, фосфор и все газы являются вредными примесями, и усилия металлургов всегда направлены на максимальное снижение этих элементов в стали.
Сера. Содержание серы в сталях промышленных марок составляет обычно 0,015…0,050 %. Сера образует с железом легкоплавкую эвтектику FеS, (температура плавления 988°), обычно располагающуюся вокруг зерен, закристаллизовавшихся ранее этой эвтектики. При горячей механической обработке (ковка, прокатка) эвтектика плавится, что вызывает потерю связи между зернами стали: слиток или поковка разваливается на части. Это явление называется красноломкостью.
Сера снижает механические свойства, особенно ударную вязкость и пластичность ( и ), а так же предел выносливости. Она ухудшают свариваемость и коррозионную стойкость.
Фосфор. Содержание фосфора в стали 0,025…0,040 %. Весьма значительно снижает вязкость железа и стали. Особенно заметно проявляется это вредное влияние фосфора при повышенном содержании углерода в стали и при низких температурах. Явление повышенной хрупкости стали при низких температурах называется хладноломкостью. Повышение содержания фосфора на каждую 0,01 % повышает порог хладоломкости на 20…25° С.
Для некоторых сталей возможно увеличение содержания серы и фосфора для улучшения обрабатываемости резанием. Это было при создании автоматных сталей, из которых на высокопроизводительных станках-автоматах изготовляется крепежный материал (гайки, болты) неответственного назначения, имеющий очень широкое применение в машиностроении. Короткая, хрупкая стружка и чистая поверхность резьбы являются главными положительными качествами автоматных сталей. Так как серы в этих сталях содержится до 0,15—0,20%, а фосфора до 0,14 %, то такие стали можно отнести к разряду специальных.
Существенным является то, что сера и фосфор при кристаллизации стального слитка сильно ликвируют, в результате чего создаются участки с резко повышенной концентрацией этих вредных элементов по сравнению со средним их содержанием в стали.
Газы (азот, кислород, водород) – попадают в сталь при выплавке.
Кислород, соединяясь со многими элементами, присутствующими в стали, образует неметаллические включения, так называемые оксиды (SiO2, А12Оз и другие). Неметаллические включения (окислы, нитриды), являясь концентраторами напряжений, могут значительно понизить предел выносливости и вязкость. Поэтому необходимо снижать содержание кислорода в стали путем хорошего раскисления и разливки в вакууме, тщательно контролировать структуру стали, идущей на изготовление ответственных изделий.
Очень вредным является растворенный в стали водород, который значительно охрупчивает сталь. Он приводит к образованию в катанных заготовках и поковках флокенов– тонких трещин овальной или округлой формы, имеющих в изломе вид пятен – хлопьев серебристого цвета.
Постоянные примеси
Марганец и кремний вводятся в процессе выплавки стали для раскисления, они являются технологическими примесями.
Содержание марганца не превышает 0,8 %. Марганец, имеющийся в стали, интенсивнее чем железо соединяется с серой, образуя весьма тугоплавкое соединение MnS (температура плавления 1620° С), располагающееся обычно в виде мелких глобулярных включений внутри зерен стали. Следовательно, включения MnS оказывают менее вредное влияние на сталь, чем включения FeS.
Содержание кремния не превышает 0,4 %. Кремний является раскислителем стали, освобождающими ее от излишков кислорода. Кремний растворяется в феррите и повышает прочность стали, особенно повышается предел текучести, . Но наблюдается некоторое снижение пластичности, что снижает способность стали к вытяжке
Наличие марганца и кремния свыше указанных пределов переводит такие стали в разряд специальных, «легированных».
Случайные примеси – практически любые элементы, случайно попавшие в сталь, например, Cr, Ni, Cu, Mo, Al, Ti и другие в количествах, ограниченных для примесей.
4.3. Легирующие элементы
Легирующие элементы – специально вводимые добавки для получения требуемых структуры и свойств. Легированные стали – сплавы на основе железа, в химический состав которых введены легирующие элементы, обеспечивающие при определенных способах производства и обработках требуемые структуру и свойства.
В качестве легирующих наиболее часто используют следующие элементы: Сг, Ni , Мn, Si, Мо, W, V, Тi, Nb. Реже используются Со, А1, Сu, В и некоторые другие. Содержание легирующих элементов может колебаться в стали от тысячных долей процента до десятков процентов.
Почти все легирующие элементы изменяют температуры полиморфных превращений железа, температуру эвтектоидной и эвтектической реакций и влияют на растворимость углерода в аустените.
По влиянию на температуры А3 и А4 легирующие элементы можно разбить на две группы.
В первую группу входят элементы, которые понижают температуру А3 и повышают температуру А4. К ним относятся Ni, Мn, С, N и др.
В сплавах железа с никелем, марганцем и кобальтом g - область «открывается», т.е. в определенном интервале температур существует неограниченная растворимость компонентов в твердом состоянии — твердые растворы с ГЦК решеткой. При этом температура А3 при определенной концентрации добавки понижается ниже нуля. На рис. 18 показан участок диаграммы Fе — легирующий элемент с открытой g - областью
Рис. 18. Диаграмма состояния железо-легирующий элемент с открытой g - областью
В сплавах с концентрацией добавки, равной или превышающей концентрацию, соответствующую точке b, ГЦК решетка устойчива при 20 - 25° С; такие сплавы называют аустенитными сталями. Таким образом, аустенитом называют не только твердый раствор углерода в Fеg, но и любые твердые растворы на основе Fеg.
Во вторую группу входят элементы, которые повышают температуру А3 и понижают А4. В этом случае температурный интервал устойчивости аустенита уменьшается и соответственно расширяется температурный интервал устойчивости Fea. Таких легирующих элементов большинство: Сг, Мо, W, V, Si, Тi и др.
Все перечисленные элементы образуют с железом диаграмму с «замкнутой» g - областью (рис. 19). Концентрация, соответствующая точке с, для большинства элементов невелика (до 1 - 1,5 %), и лишь для хрома аустенитная область простирается до 12 % (рис. 20).
Из перечисленных элементов, дающих замкнутую g - область, только хром и ванадий не образуют с железом промежуточных фаз, и поэтому a -область «открывается»: наблюдается неограниченная растворимость этих элементов в железе с ОЦК решеткой (см. рис. 19, a). Остальные легирующие элементы, замыкающие область, образуют с железом промежуточные фазы, поэтому при определенных концентрациях легирующего элемента на диаграммах появляется линия, ограничивающая растворимость, правее которой расположены двухфазные области (см. рис. 19, б). Однофазные сплавы с ОЦК решеткой, устойчивой при всех температурах вплоть до солидуса, называют ферритными сталями. Таким образом, ферритом называют не только твердый раствор углерода в Fea, но и любые твердые растворы на основе Fea.
Рис. 19. Диаграмма состояния железо – л.э. Рис. 20. Влияние л.э. на протяженность
с замкнутой γ-областью;
а – открытая
a-область, б – закрытая a-область.
4.4. Влияние легирующих элементов на фазовые превращения сталей
Легирующие элементы, понижающие температуру А3 в безуглеродистых сплавах (Ni и Mn), смещают линии PSK, GS и SE диаграммы Fe - Fе3С в сторону более низких температур.
Легирующие элементы, повышающие температуру A3 в безуглеродистых сплавах, оказывают обратное влияние — они смещают линии PSK, GS и SE в сторону более высоких температур. Влияние некоторых легирующих элементов на положение эвтектоидной линии при нагреве показано на рис. 21.
В сложнолегированных сталях, содержащих элементы одной и другой групп, смещение критических температур зависит от количественного соотношения этих элементов.
Под влиянием легирования изменяется и положение узловых концентрационных точек диаграммы Fe - Fе3С. Важнейшие узловые точки стали — S, указывающая содержание углерода в эвтектоиде (рис. 22), и Е, указывающая максимальную растворимость углерода в аустените.
Рис. 21. Влияние л.э. на температуру Аc1 Рис. 22. Влияние л.э. на содержание
Большинство легирующих элементов уменьшает растворимость углерода в аустените при всех температурах, что равносильно сдвигу линии SE влево, в сторону меньших концентраций углерода.