Механические процесссы в химической технологии

Автор работы: Пользователь скрыл имя, 18 Ноября 2012 в 15:46, курсовая работа

Краткое описание

Любая технология, в том числе и химическая, - это наука о методах переработки сырья в готовую продукцию. Методы переработки должны быть экономически и экологически выгодными и обоснованными.
Химическая технология возникла в конце 18 века и почти до 30-х годов 20 века состояла из описания отдельных химических производств, их основного оборудования, материальных и энергетических балансов.

Содержание

Введение 3
1 Механические процессы химической технологии 4
2 Процессы перемешивания 6
2.1Основные характеристики процесса перемешивания 6
2.2 Смеси 7
2.3 Способы перемешивания 11
3 Перемешивающие устройства 15
3.1 Лопастные мешалки 16
3.2 Листовые мешалки 18
3.3 Пропеллерные мешалки 19
3.4 Турбинные мешалки 21
3.5 Специальные мешалки 24
3.6 Выбор мешалки 26
Заключение 27
Список использованных источников 29
Приложения 30

Вложенные файлы: 1 файл

Новый курсовик по ОХТ.doc

— 950.50 Кб (Скачать файл)

Для перемешивания жидкостей  вязкостью не более 104 мн . сек/м2, а  также для перемешивания в аппаратах, обогреваемых с помощью рубашки или внутренних змеевиков, в тех случаях, когда возможно выпадение осадка или загрязнение теплопередающей поверхности, применяют якорные (рис.2) или рамные (рис.3) мешалки. Они имеют форму, соответствующую внутренней форме аппарата, и диаметр, близкий к внутреннему диаметру аппарата или змеевика. При вращении эти мешалки очищают стенки и дно аппарата от налипающих загрязнений. [5]

Достоинства лопастных  мешалок:

1) простота устройства  и дешевизна изготовления;

2) вполне удовлетворительное  перемешивание умеренно вязких  жидкостей.

Недостатки:

1) малая интенсивность перемешивания вязких жидкостей;

2) непригодность для  перемешивания легко расслаивающихся  веществ.

Основные области применения лопастных мешалок:

1) перемешивание жидкостей  небольшой вязкости;

2) растворение и суспендирование  твердых веществ;

3) грубое смешение  жидкостей. [6]

 

Рисунок 1 - Лопастная мешалка

Рисунок 2 - Якорная мешалка

Рисунок 3 - Рамная мешалка

3.2 Листовые мешалки

 

Листовые мешалки (рис.4) имеют лопасти большей ширины, чем у лопастных мешалок, и относятся к мешалкам, обеспечивающим тангенциальное течение перемешиваемой среды. Кроме чисто тангенциального потока, который является преобладающим, верхние и нижние кромки мешалки создают вихревые потоки, подобные тем, которые возникают при обтекании жидкостью плоской пластины с острыми краями. При больших скоростях вращения листовой мешалки на тангенциальный поток накладывается радиальное течение, вызванное центробежными силами. Листовые мешалки применяют для перемешивания маловязких жидкостей (вязкостью менее 50 мн . сек/м2), интенсификации процессов теплообмена, при растворении. Для процессов растворения используют листовые мешалки с отверстиями в лопастях. При вращении такой мешалки на выходе из отверстий образуются струи, способствующие растворению твердых материалов. Основные размеры лопастных мешалок изменяются в зависимости от вязкости среды. Обычно для лопастных мешалок принимают следующие соотношения размеров: диаметр мешалки d = (0,66-0,9)D (D— внутренний диаметр аппарата), ширина лопасти мешалки b = (0,1 – 0,2)D, высота уровня жидкости в сосуде H = (0,8-1,3)D, расстояние от мешалки до дна сосуда h d 0,3D. Для листовых мешалок d = (0,3-0,5) D, b = (0,5-1,0)D, h = (0,2-0,5) D. Окружная скорость лопастных и листовых мешалок в зависимости от вязкости перемешиваемой среды может изменяться в широких пределах (от 0,5 – 5,0 сек-1), причем с увеличением вязкости и ширины лопасти скорость вращения мешалки уменьшается. При высоких скоростях вращения лопастных мешалок в аппарате устанавливают отражательные перегородки. Листовые мешалки, как правило, без отражательных перегородок не применяют. [5]

Рисунок 4 - Листовая мешалка

 

3.3 Пропеллерные мешалки

 

Рабочей частью пропеллерной мешалки является пропеллер (рис.5) — устройство с несколькими фасонными лопастями, изогнутыми по профилю гребного винта. Наибольшее распространение получили трехлопастные пропеллеры. На валу мешалки, который может быть расположен вертикально, горизонтально или наклонно, в зависимости от высоты слоя жидкости устанавливают один или несколько пропеллеров. Вследствие более обтекаемой формы пропеллерные мешалки при одинаковом числе Рейнольдса потребляют меньшую мощность, чем мешалки прочих типов.

Рисунок 5 - Пропеллерная мешалка

1— корпус аппарата

2 — вал

3 — пропеллер

4 - диффузор

 

Рисунок 6 - Пропеллерная мешалка с диффузором:

Пропеллерные мешалки  создают преимущественно осевые потоки перемешиваемой среды и, как следствие этого,— большой насосный эффект, что позволяет существенно сократить продолжительность перемешивания.. Их эффективность сильно зависит от формы аппарата и расположения в нем мешалки. Пропеллерные мешалки следует применять в цилиндрических аппаратах с выпуклыми днищами. При установке их в прямоугольных баках или аппаратах с плоскими или вогнутыми днищами интенсивность перемешивания падает вследствие образования застойных зон. [5]

Для улучшения перемешивания  больших объемов жидкостей и  организации направленного течения жидкости (при большом отношении высоты к диаметру аппарата) в сосудах устанавливают направляющий аппарат, или диффузор (рис. 6). Диффузор представляет собой короткий цилиндрический или конический стакан, внутри которого помещают мешалку. При больших скоростях вращения мешалки в отсутствие диффузора в аппарате устанавливают отражательные перегородки. Пропеллерные мешалки применяют для перемешивания жидкостей вязкостью не более 2.103 мн сек/м2, для растворения, образования взвесей, быстрого перемешивания, образования маловязких эмульсий и гомогенизации больших объемов жидкости. Для пропеллерных мешалок принимают следующие соотношения основных размеров: диаметр мешалки

d = (0,2—0,5) D, шаг винта  s=(1,0— 3,0) D, расстояние от мешалки до дна сосуда h=(0,5—1,0) d, высота уровня жидкости в сосуде Н=(0,8—1,2)D. Число оборотов пропеллерных мешалок достигает 40 в секунду, окружная скорость — 15 м/сек. [5]

Достоинства пропеллерных мешалок:

1) интенсивное перемешивание;

2) умеренный расход  энергии, даже при значительном числе оборотов;

3) невысокая стоимость.

Недостатки:

1) малая эффективность перемешивания вязких жидкостей;

2) ограниченный объем  интенсивно перемешиваемой жидкости.

Пропеллерные мешалки  применяются главным образом  для следующих, целей:

1) интенсивное перемешивание  маловязких жидкостей;

2) приготовление суспензий  и эмульсий;

3) взмучивание осадков,  содержащих до 10% твердой фазы, состоящей  из частиц размером до 0,15 мм. [6]

 

3.4 Турбинные мешалки

 

Эти мешалки имеют  форму колес водяных турбин с плоскими, наклонными или криволинейными лопатками, укрепленными, как правило, на вертикальном валу (рис. 7). В аппаратах с турбинными мешалками создаются преимущественно радиальные потоки жидкости. При работе турбинных мешалок с большим числом оборотов наряду с радиальным потоком возможно возникновение тангенциального (кругового) течения содержимого аппарата и образование воронки. В этом случае в аппарате устанавливают отражательные перегородки. Закрытые турбинные мешалки (рис. 7) в отличие от открытых (рис. 7 а, б, в) создают более четко выраженный радиальный поток. Закрытые мешалки имеют два диска с отверстиями в центре для прохода жидкости; диски сверху и снизу привариваются к плоским лопастям. Жидкость поступает в мешалку параллельно оси вала, выбрасывается мешалкой в радиальном направлении и достигает наиболее удаленных точек аппарата. Турбинные мешалки обеспечивают интенсивное перемешивание во всем объеме аппарата. При больших значениях отношения высоты к диаметру аппарата применяют многорядные турбинные мешалки. Мощность, потребляемая турбинными мешалками, работающими в аппаратах с отражательными перегородками, при турбулентном режиме перемешивания практически не зависит от вязкости среды. Поэтому мешалки этого типа могут применяться для смесей, вязкость которых во время перемешивания изменяется.

Турбинные мешалки широко применяют для образования взвесей (размер частиц для закрытых мешалок  может достигать 25 мм.) , растворения, абсорбции газов и интенсификации теплообмена. Для перемешивания в больших объемах (например, при гомогенизации жидкостей в хранилищах, объем которых достигает 2500 м3 и более) турбинные мешалки менее пригодны, чем пропеллерные мешалки или сопла. В зависимости от области применения турбинные мешалки обычно имеют диаметр d = (0,15—0,65) D при отношении высоты уровня жидкости к диаметру аппарата не более двух. При больших значениях этого отношения используют многорядные мешалки. Число оборотов мешалки колеблется в пределах 2—5 в секунду, а окружная скорость составляет 3—8 м/сек. [5]

 

а – открытая с прямыми  лопатками

б – открытая криволинейными лопатками

в – открытая с наклонными лопатками

г – закрытая с направляющим аппаратом

1 – турбинная мешалка

2 – направляющий аппарат

Рисунок 7 - Турбинная мешалка

Достоинства турбинных мешалок:

1) быстрота перемешивания и растворения;

2) эффективное перемешивание вязких жидкостей;

3) пригодность для  непрерывных процессов.

Недостатком турбинных  мешалок является сравнительная  сложность и высокая стоимость  изготовления. Области применения турбинных мешалок:

1) интенсивное перемешивание  и смешивание жидкостей различной  вязкости, которая может изменяться  в широких пределах (мешалки открытого  типа до 105 спз, мешалки закрытого  типа до 5 * 105 спз);

2) тонкое диспергирование  и быстрое растворение;

3) взмучивание осадков  в жидкостях, содержащих 60% и более  твердой фазы (для открытых мешалок - до 60%); допустимые размеры твердых частиц: до 1,5 мм для открытых мешалок, до 25 мм для закрытых мешалок.[6]

 

3.5 Специальные мешалки

 

К этой группе относятся мешалки, имеющие более ограниченное применение, чем мешалки рассмотренных выше типов.

Барабанные мешалки (рис. 8) состоят из двух цилиндрических колец, соединенных между собой вертикальными лопастями прямоугольного сечения. Высота мешалки составляет 1,5—1,6 ее диаметра. Мешалки этой конструкции создают значительный осевой поток и применяются (при отношении высоты столба жидкости в аппарате к диаметру барабана не менее 10) для проведения газожидкостных реакций, получения эмульсий и взмучивания осадков.

 

Рисунок 8 - Барабанная мешалка.

Дисковые мешалки (рис.9) представляют собой один или несколько гладких дисков, вращающихся с большой скоростью на вертикальном валу. Течение жидкости в аппарате происходит в тангенциальном направлении за счет трения жидкости о диск, причем сужающиеся диски создают также осевой поток. Иногда края диска делают зубчатыми. Диаметр диска составляет 0,1—0,15 диаметра аппарата. Окружная скорость равна 35 м/сек, что при небольших размерах диска соответствует очень высоким числам оборотов. Потребление энергии колеблется от 0,5 кВт для маловязких сред до 20 кВт для вязких смесей. Дисковые мешалки применяются для перемешивания жидкостей в объемах до 4 м3. [5]

Рисунок 9 - Дисковая мешалка

Вибрационные мешалки  имеют вал с закрепленными на нем одним или несколькими перфорированными дисками (рис. 10). Диски совершают возвратно-поступательное движение, при котором достигается интенсивное перемешивание содержимого аппарата. Энергия, потребляемая мешалками этого типа, невелика. Они используются для перемешивания жидких смесей и суспензий преимущественно в аппаратах, работающих под давлением. Время, необходимое для растворения, гомогенизации, диспергирования при использовании вибрационных мешалок, значительно сокращается. Поверхность жидкости при перемешивании этими мешалками остается спокойной, воронки не образуется. Вибрационные мешалки изготовляются диаметром до 300 мм и применяются в аппаратах емкостью не более 3 м3. [5]

Рисунок 10 - Устройство дисков вибрационных мешалок.

 

3.6 Выбор мешалки

 

Выбор того или иного  типа мешалок определяется целевым  назначением перемешивающих устройств  и конкретными условиями протекания процесса. Какие-либо четкие рекомендации по этому вопросу пока не могут  быть сформулированы. Поэтому при  выборе того или иного типа перемешивающих устройств можно использовать ориентировочные характеристики условий целесообразного применения различных типов мешалок, приведенных в таблице 2. [6]

Таблица 2 - Ориентировочные характеристики для выбора мешалки

Тип мешалок

Объем жидкости, перемешиваемой одной мешалкой, м3

Содержание твердой  фазы при суспенди ровании, %

Динамическая вязкость перемешиваемой жидкости, кг/(м*с)

Окружная скорость мешалки, м/с

Частота вращения мешалки

Лопастные

<1,5

<5

< 0,01

1,7-5,0

0,3-1,35

Пропеллерные

<4,0

<10

<0,06

4,5-17,0

8,5-20,0

Турбинные:

- Открытые 

- Закрытые

 

<10,0

<20,0

 

<60

60 и больше

 

<1,00

<5,00

 

1,8-13,0

2,1-8,0

 

0,7-10,0

1,7-6,0

Специальные

<20,0

<75

< 5,00

6,0-30,0

1,7-25,0


Заключение

 

В процессе перемешивания  происходит тесное соприкосновение частиц и непрерывное обновление поверхности взаимодействия веществ. Вследствие этого при перемешивание значительно ускоряются процессы массообмена , например такие ,как растворение в жидкости твердых веществ, протекание большинства химических реакций и процесс теплообмена. Перемешивание способствует процессу ускорения абсорбции, выпаривания и основных процессов химических технологий.

Перемешивание - это процесс  многократного перемещения частиц неоднородной текучей среды друг относительно друга во всем объеме емкости или аппарата, происходящий за счет импульсов ,среде с мешалкой, струей жидкости или газа. Перемешивание с помощью мешалки - обязательное условие успешного проведения многих самых разнообразных технологических операций. На производстве перемешивание с помощью мешалки осуществляют в целях:

Информация о работе Механические процесссы в химической технологии