Автор работы: Пользователь скрыл имя, 25 Апреля 2013 в 23:24, реферат
Последняя треть ХХ столетия ознаменовалась бурными событиями в жизни человеческого общества. Глубокие сдвиги в экономических, политических, общественных структурах периодически взрывают устоявшийся, казалось бы, порядок вещей, вызывают бурный, непредсказуемый ход событий. В основе этих движений - научно-технический прогресс, темпы которого все более ускоряются.
Введение
1.Научные открытия
2. Космонавтика
3. Радиоэлектроника
4. Кибернетика 5. Ядерная энергетика
Заключение
Список использованной литературы
Важнейшие для кибернетики проблемы измерения количества информации разработаны американским инженером и математиком Клодом Шенноном, опубликовавшим в 1948 г. классический труд «Теория передачи электрических сигналов при наличии помех» в котором заложены основные идеи существенного раздела кибернетики — теории информации.
Ряд идей, нашедших
отражение в кибернетике, связан
с именем советского математика академика
А. Н. Колмогорова. Первые в мире работы
в области линейного
Необходимо отметить и труды А. А. Богданова (1873—1928 гг.) в этой области. Всем известна острая критика, которой В. И. Ленин подверг А. А. Богданова за его путаные философские построения. Но Богданов был также автором ряда работ по политической экономии и большой монографии «Всеобщая организационная наука (тектология)». Эта работа, опубликованная впервые в 1912—1913 гг., а затем изданная в виде трехтомника в 1925—1929 гг., содержит ряд оригинальных идей, предвосхищающих многие положения современной кибернетики.
Появление в 1948 г. работы Н. Винера было представлено на Западе некоторыми журналистами как сенсация. О кибернетике, вопреки мнению самого Винера, писали как о новой универсальной науке, якобы способной заменить философию, объясняющую процессы развития в природе и обществе. Все это наряду с недостаточной осведомленностью отечественных философов с первоисточниками из области теории кибернетики привело к необоснованному отрицанию ее в нашей стране как самостоятельной науки.
Однако уже в середине 50-х годов положение изменилось. В 1958 г. в русском переводе выходит первая книга Н. Винера, а в 1959 г.— книга «Введение в кибернетику» английского биолога У. Р. Эшби, написанная им в 1958 г. Эта, а также другие работы Эшби, в частности его монография «Конструкция мозга» (1952 г.) принесли ученому широкое признание в области кибернетики, и биологической кибернетики в частности.
Интенсивное развитие кибернетики в нашей стране связано с деятельностью таких крупных ученых, как академик А. И. Берг (1893—1979 гг.) — выдающийся ученый, организатор и бессменный руководитель Научного совета по кибернетике АН СССР; академик В. М. Глушков (1923—1982 гг.) — математик и автор ряда работ по кибернетике, теории конечных автоматов, теоретическим и практическим проблемам автоматизированных систем управления; академик В. А. Котельников, разработавший ряд важнейших проблем теории информации; академик С. А. Лебедев (1902—1974 гг.), под руководством которого был создан ряд быстродействующих ЭВМ; член-корреспондент АН СССР А. А. Ляпунов (1911—1973 гг.)—талантливый математик, сделавший очень много для распространения идей кибернетики в нашей стране; академик А. А. Харкевич (1904—1965 гг.) — выдающийся ученый в области теории информации, и многих других. Большой вклад в развитие экономической кибернетики внесли академики Н. П. Федоренко и А. Г. Аганбегян. Первые работы по сельскохозяйственной кибернетике выполнены М. Е. Браславцем, Р. Г. Кравченко, И. Г. Поповым. Поэтому не случайно, что признавая конкретные достижения отдельных русских и советских ученых в области кибернетики, некоторые зарубежные исследователи по праву называют второй родиной этой науки Советский Союз.
5.Ядерная энергетика
В истории человечества не было научного события, более выдающегося по своим последствиям, чем открытие деления ядер урана и овладения ядерной энергией. Человек получил в свое распоряжение огромную, ни с чем не сравнимую силу, новый могучий источник энергии, заложенный в ядрах атомов.
История атомного века началась, конечно, раньше августа 1945 г. когда весть о трагедии Хиросимы потрясла мир. В развитие ядерной физики, овладение тайнами ядерной энергии внесли свой вклад такие учёные, как Альберт Эйнштейн, Нильс Бор, Макс Планк, Эрнест Резерфорд и другие, заложившие прочный фундамент науки об атомах. Целая плеяда выдающихся ученых из разных стран мира создала стройное учение об атоме. Если расположить в хронологическом порядке все важнейшие открытия и работы, приведшие к расщеплению ядра атома, то история овладения ядерной энергией будет выглядеть следующим образом.
Начало ядерной физике положила опубликованная в декабре 1895 работа В. Рентгена «О новом роде лучей». Он назвал их Х - лучами, впоследствии они получили название рентгеновских.
В 1896 г. А. Беккерель открыл, что урановая руда испускает невидимые лучи, обладающие большой проникающей способностью. Позднее это явление было названо радиоактивностью.
В 1898 г. М. Склодовская и П. Кюри выделили несколько сотых грамм нового вещества — элемента, который излучал - частицы. Они назвали его полонием. В декабре этого же года они открыли новый элемент - радий
В 1911 г. Э. Резерфорд предложил планетарную модель атома. Он доказал, что почти вся масса атома сосредоточена в его ядре.
В 1913 г. Н. Бор создал модель атома водорода и теорию строения атома. С этого времени началось быстрое развитие квантовой теории фактическое рождение атомной физики.
В 1932 г. Дж. Чедвик обнаружил не имеющую электрического заряда нейтральную ядерную частицу - нейтрон, сыгравший впоследствии роль ключа к большой ядерной энергетике.
В 1932 г. Д. Д. Иваненко предложил гипотезу строения атомного ядра из протонов и нейтронов.
В 1933 г. И. и Ф. Жолио - Кюри открыли новый вид радиоактивности искусственную радиоактивность. Это сыграло исключительную роль в издании новых радиоактивных элементов.
В 1934 г. Э. Ферми обнаружил, что при бомбардировке урана нейтронами образуются радиоактивные элементы. Итальянские исследователи приняли их за элементы более тяжелые, чем уран, и назвали трансурановыми.
В 1934 г. С. И. Вавилов и П. А. Черенков открыли одно из фундаментальных физических явлений — свечение жидкости при движении в ней электронов со скоростью, превышающей фазовую.
В 1935 г. И. В. Курчатов с группой сотрудников открыли явление ядерной изомерии искусственных радиоактивных атомных ядер и разработали теорию этого явления.
В 1936 г. Я. И. Френкель предложил капельную модель ядра и ввел термодинамические понятия в ядерную физику, выдвинул первую теорию ядерного деления.
В 1938 г. О. Ган и Ф. Штрассман, повторяя опыты Ферми, обнаружили, что в облученном нейтронами уране появляются элементы, стоящие в середине периодической системы элементов Менделеева и что при попадании нейтрона в ядро урана ядро разваливается — делится па два меньших ядра.
В 1939 г. Ю. Б. Харитон и Я. Б. Зельдович теоретически показали возможность осуществления цепной реакции деления ядер урана-235. Оказалось, что энергия, выделяющаяся при расщеплении 1 кг урана, равна той, которая получается при сжигании 2 500 000 кг самого лучшего каменного угля.
В 1940 г. Г. Н. Флеров и К. А. Петржак открыли спонтанное деление ядер урана, т. е. доказали, что ядра урана могут самопроизвольно распадаться.
В 1940 г. Ю. Б. Харитон и Я. Б. Зельдович предложили расчет цепной реакции деления ядер урана, установив, таким образом, принципиальную возможность ее осуществления. В статье «Кинетика цепного распада урана» (Экспериментальная и теоретическая физика, 1940, т. 10) они писали: «. . . смешивая уран с веществами, обладающими малым сечением захвата (например с тяжелой водой), либо обогащая уран изотопом U, которому приписывается распад под действием медленных нейтронов, окажется возможным создание условий цепного распада урана посредством разветвляющихся цепей, при котором сколь угодно слабое облучение нейтронами приведет к мощному развитию ядерной реакции. . . ». Проблемы ядерной физики давно занимали умы советских ученых. Еще в 1920 г. в стране была создана так называемая Атомная комиссия. В 1932 г. в Ленинградском физико-техническом институте была образована специальная группа по ядру. Руководителем группы стал А. Ф. Иоффе, его заместителем — И. В. Курчатов.
В сентябре 1937 г. в Москве состоялась Вторая всесоюзная конференция по атомному ядру, затем последовали совещания в 1938, 1939 и в 1940 гг. Непременным организатором и участником этих совещаний был И. В. Курчатов. На совещании по атомному ядру в ноябре 1940 г. Курчатов обсуждал конкретные пути осуществления цепной ядерной реакции, опираясь, в частности, на теоретические расчеты Ю. Б. Харитона и Я. Б. Зельдовича. Речь шла о создании уранового котла.
Начиная с 1935 г.
советские ученые смогли приступить
к научно-исследовательской
Перечень научных открытий в области ядерной физики можно было бы продолжить и дальше, но все это можно найти в других научных и научно-популярных книгах. Здесь же хочется подчеркнуть, что период с 1932 по 1940 г. был очень плодотворным для советских физиков. Работы И. В. Курчатова, Я. И. Френкеля, Ю. Б. Харитона, Я. Б. Зельдовича, Д. Д. Иваненко, Г. Н. Флерова, К. А. Петржака, о которых говорилось выше, а также А. И. Алиханова. А. И. Алиханяна, Л. А. Арцимовича, Д. В. Скобельцына, В. Г. Хлопина, Л. В. Мысовского, а также работы Н. Н. Семенова по исследованию механизма химических реакций и теории разветвленных цепных химических реакций и многих других отечественных ученых приблизили практическое осуществление цепной реакции деления ядер урана. В этот период советские ученые опубликовали более 100 работ по ядерной физике. Коллективы институтов в Ленинграде, Москве, Харькове, Свердловске выполнили много интересных работ, приоткрывших тайну цепной реакции деления ядер атомов.
В Советском Союзе все работы, связанные с расщеплением атомного ядра, были прерваны с началом войны и вновь возобновились лишь в середине 1943 г. , но уже в декабре 1946 г. в Москве на территории Института атомной энергии (носящего сейчас имя его основателя И. В. Курчатова) был введен в действие первый в Европе и Азии исследовательский ядерный реактор. В августе 1949 г. было проведено испытание атомной бомбы, а в августе 1953 г. — водородной. Советские ученые овладели тайнами ядерной энергии, лишив США монополии на ядерное оружие.
Но создавая ядерное оружие, советские специалисты думали об использовании ядерной энергии в интересах народного хозяйства, промышленности, науки, медицины и других областей человеческой деятельности. В декабре 1946 г. в СССР был пущен первый в Европе ядерный реактор. В июне 1954 г. вошла в строй первая в мире атомная электростанция в подмосковном городе Обнинске. В 1959 г. спущен на воду первый в мире атомный ледокол «Ленин». Таким образом, ядерная физика создала научную основу атомной технике, а атомная техника в свою очередь явилась фундаментом ядерной энергетики, которая, опираясь на ядерную науку и технику, стала в настоящее время развитой отраслью электроэнергетического производства.
Исторические решения XXVI съезда КПСС определили пути развития народного хозяйства страны на ближайшие годы и на дальнюю перспективу. Был также намечен ход развития ядерной науки и техники, в том числе ядерной энергетики как вполне определившейся самостоятельной отрасли электроэнергетического производства.
Ядерная энергетика — очень молодая отрасль науки и техники. Первая в мире атомная электростанция (АЭС) в г. Обнинске Калужской области вошла в строй всего четверть века назад: 27 июня 1954 г. она выдала электрическую энергию в Московскую энергосеть. За это время ядерная энергетика выросла, возмужала и вышла на широкую дорогу промышленного производства электрической энергии во многих странах мира — Советском Союзе, США, Англии, Франции, Канаде, Италии, ФРГ, Японии, Швеции, Чехословакии, ГДР, Болгарии, Швейцарии, Испании, Индии, Пакистане, Аргентине и др. |На январь 1981 г. во всем мире введено более 250 атомных электростанций (блоков) установленной мощностью около 140 млн. кВт. Ни одна отрасль техники не развивалась так быстро, как ядерная энергетика. Обычным электростанциям понадобилось 100 лет, чтобы достичь такого уровня инженерной техники и эксплуатации, какого достигла уже к 1975 г. ядерная энергетика.
Заключение
Таким образом мы познакомились только с некоторыми вершинами науки. К началу XX века относятся первые попытки государств координировать и регулировать научные исследования, исходя из своих задач. Эти общества и ассоциации играли большую роль в национальной консолидации научных сил и развитии информационных связей между коллективами исследователей. Образовались первые постоянно действующие международные научные организации.
По отношению к логике
научного открытия традиционной считается
установка, что разработка безотказно
работающих правил творчества — задача
неосуществимая. Невозможно дать рациональные
обоснования спонтанному
Широко распространены указания на эвристику, которая сопровождает процесс научного открытия. Эвристика часто воспринимается как сюрпризная сфера поиска и находок, связанной с поиском в условиях неопределенности. Эвристические методы и модели предлагают использование нетривиальных сценариев, средств и методов. Им противостоят формально-логические приемы.
Логика открытий принципиально не поддается формализации. Редукция, заимствование методов, интеграция приемов гуманитарных и технических наук, выбор практического внедрения тех или иных научных разработок, сам решающий эксперимент явно или неявно основываются на эвристических допущениях. И хоть эвристика как раздел методологии еще не получила официального признания, она оценивается как стратегия поиска эффективных и оригинальных решений, как мера творческого риска. В постнеклассической картине мира качество эвристичности теории выдвинуто на роль критерия научного знания.
Характерный признак логики открытия — ее принципиальная междисциплинарность. Творческая деятельность опирается на методы, отличные от методов простого перебора и от традиционно принятых и устоявшихся. Модели осуществления поиска значительно индивидуализированы и тесно связаны с психической и мотивационной деятельностью субъекта познания и оказывают достаточное сопротивление внешним ограничениям, накладываемым на параметры исследования.
Ученые фиксируют ряд этапов, сопровождающих процесс научного открытия:
- выделение в потоке
входящей информации