Автор работы: Пользователь скрыл имя, 07 Января 2013 в 16:28, курсовая работа
Обеспечение стабильного функционирования, надежности и безопасно-сти магистральных нефтепроводов входит в ряд первоочередных задач при их строительстве и эксплуатации любой трубопроводной системы. С точки зрения эксплуатационной надежности магистральных трубопроводов к участкам с повышенным риском эксплуатации можно отнести переходы через естественные и искусственные преграды.
Введение ……………………………………………………………………...3
1. Инженерные решения по обеспечению надежности эксплуатируемых подводных переходов …………………………..5
2. Методы прокладки подводных переходов трубопроводов ……………12
3. Определение устойчивости против всплытия подводного трубопровода
с учетом гидродинамического воздействия потока воды на трубу ……...17
4. Определение параметров балластировки трубопрово-да……………….20
5. Определение параметров укладки подводного трубопровода на дно траншеи протаскиванием на первой и четвертой стадиях ……………….21
Используемая литература …………………………………………………..27
Для обследования подводных газопроводов на переходах через реки компания"Wimpol"разработала в 1986 - 87 гг. электромагнитную сканирующую систему. По опубликованным данным (см. Pipeline а gas jornal v215, 1988, № 10, p.37 - 41) система обеспечивает получения продольного профиля трубопровода и его плановое положение относительно русла реки. Кроме того, система позволяет установить отметки дна реки и характер эрозионных явлений.
ВНИИГАЗом разработана "Методика оценки фактического положения и состояния подземных трубопроводов", которая может применяться для определения пространственного положения трубопровода и состояния изоляционного покрытия.
2 Методы прокладки подводных переходов трубопроводов
При проектировании подводных переходов через водные преграды разработчики опираются на данные гидрологических, инженерно-геологических и топографических изысканий с учетом специфики эксплуатации в данном районе ранее построенных подводных переходов, существующих и проектируемых гидротехнических сооружений, которые могут оказать влияние на режим водной преграды в месте перехода, планируемых дноуглубительных работ, а также на требования по охране водных ресурсов.
В мировой практике строительства подводных переходов наиболее широкое применение получили методы их прокладки, которые условно можно разделить на две группы: траншейные и бестраншейные. Одним из самых распространенных методов строительства подводных переходов является траншейный метод (рис. 2.1). Он включает в себя подводную разработку траншеи специальной землеройной техникой (земснаряды, грунтососы, гидромониторы, скреперы и т. д.) и одновременно с этим подготовку дюкера. Применяются три основных метода укладки трубопровода в подводные траншеи: протягивание по дну; погружение с поверхности воды трубопровода полной длины и укладка с плавучих средств и опор.
Каждый из перечисленных методов укладки имеет свои недостатки, основным из которых является большой объем подводно-технических и земляных работ, связанных с разработкой траншеи, однако при определенных условиях имеют ряд преимуществ. Чаще всего траншейный метод строительства подводных переходов применяется в случаях невозможности использования бестраншейных методов, характеризующихся рядом ограничений.
В настоящее время широкое
При использовании бестраншейных технологий строительства подводных переходов отсутствуют недостатки традиционных методов, уменьшается неблагоприятное воздействие на окружающую среду, в том числе гидрологию водоемов, повышается надежность трубопровода.
Строительство подводных переходов методом наклонно направленного бурения (ННБ), в зависимости от характеристик водных преград, технических характеристик используемых буровых установок, технологии бурения, конструктивных параметров протаскиваемого трубопровода, осуществляется по различным технологическим схемам. Общими для всех технологических схем являются основные этапы ННБ:
а) бурение пилотной скважины;
б) расширение скважины в один или несколько
приемов в различных направлениях;
в) протягивание
трубопровода в разрабатываемую скважину.
Рис. 2.1 - Строительство подводных переходов траншейный методом и методом микротоннелированием
Данный метод позволяет
Применение ННБ имеет ряд
ограничений: сложные инженерно-
В России были построены единичные переходы протяженностью более 1000 м с диаметром труб не более 1020 мм. Основная масса построенных переходов диаметром труб 1020–1420 мм имеет протяженность не более 500–700 м. Другим ограничением метода ННБ являются сложные геологические условия: галечниковые грунты, грунты с включением валунов, карстовых полостей, скальные, илистые грунты. Эти факторы в совокупности с конструктивными параметрами буровых установок и технологии бурения определяют возможность или невозможность строительства того или иного объекта методом ННБ.
Метод микротоннелирования (рис. 2.1) основан на строительстве тоннеля с помощью дистанционного управляемого проходческого щита. Микротоннельный щит работает из заранее подготовленной стартовой шахты в прямолинейном или криволинейном направлении. Выемка щита производится из приемной шахты.
Преимуществами
Однако микротоннелирование
а) в трещиноватых
доломитах есть большой риск заклинивания
трубного става, в связи с относительно
высокой прочностью породы и опасностью
возникновения неравномерного горного
давления;
б) на границе перехода из прочных пород в зону карстового образования при малейшем отклонении щита от заданной траектории резко возрастают усилия продавливания всего трубного става (заклинивание), при превышении которых будет происходить разрушение секций трубного става;
в) при преодолении карстовых участков
возникает большая степень риска отклонения
трубного става от проектной траектории
прокладки микротоннеля, что повлечет
за собой изменение проектного положения
и расчетной схемы трубопровода;
г) стандартная
конструкция труб не предусматривает
связи растяжения в стыках, поэтому заклинивание
может привести к раскрытию стыка и прорыва
грунта в микротоннель при проходке в
слабых грунтах.
При сооружении подводных переходов тоннельным методом используют щитовую проходку защитного кожуха-обделки, состоящего из отдельных колец, которые, в свою очередь, собираются из блоков – сегментов (или тюбингов) под защитой проходческого щита. Для продвижения проходческого комплекса в конструкции щита предусматриваются щитовые домкраты, которые отталкиваются от каждого вновь собранного кольца обделки, тем самым разрабатывая грунт и освобождая место для монтажа следующего кольца обделки. При проходке тоннеля производится первичное и контрольное нагнетание, в результате которого заполняются возможные трещины и пустоты вокруг обделки тоннеля.
Преимущества тоннельного
Целесообразность применения того или иного метода строительства подводных переходов определяется с учетом анализа всех возможных факторов, существенно влияющих на надежность и безопасность трубопровода. Причем в рамках одного проекта строительства могут применяться практически все методы прокладки подводных переходов трубопровода.
Таким образом, при проектировании, строительстве и эксплуатации магистральных трубопроводов необходимо уделять особое внимание сооружаемым подводным переходам, учитывать срок их эксплуатации, изменения микроструктуры металла во времени, воздействие циклических нагрузок на изменение физико-механических свойств стали; разрабатывать методы и способы, повышающие надежность подводных переходов трубопровода, что увеличит срок их безотказной работы.
Исходные данные: участок категории 1; мм; = 1024 мм; мм; ; ; =2000 м; =9466 Н/м; =19 Н/м; = 3620 Н/м; = 0; ; ; ; L=350м; глубина водоема =7,4м; = 1,0м; грунт суглинистый, k=0,4.
При расчете устойчивости против всплытия подводного трубопровода, пересекающего реки, желательно учитывать вертикальную и горизонтальную составляющие силового гидродинамического воздействия потока воды на трубу в процессе укладки трубопровода на дно траншеи.
Горизонтальная составляющая гидродинамического воздействия на единицу длины трубопровода:
, (3.1)
где - гидродинамический коэффициент обтекания трубы водным потоком;
- средняя скорость течения воды в слое на уровне уложенного на дно подводной траншеи трубопровода, м/с.
Коэффициент определяется в зависимости от числа Рейнольдса:
где v – кинематическая вязкость воды, v = .
для офутерованного трубопровода:
И в том, и другом случае, = 1,0; = 0,66.
Вертикальная составляющая воздействия гидродинамического потока на единицу длины трубопровода рассчитывается по формуле:
, (3.3)
где - гидродинамический коэффициент подъемной силы, остальные параметры те же, что и в формуле (3.1). Коэффициент зависит от числа Рейнольдса и определяется (для гладких труб) по графику, приведенному в
Требуемый вес балластировки в воде будет определятся по следующей формуле:
где - коэффициент надежности по нагрузке (0,9 – для железобетонных грузов);
- коэффициент надежности
- расчетная выталкивающая сила воды, действующая на трубопровод, = 9466 Н/м;
- расчетная нагрузка, обеспечивающая
упругий изгиб трубопровода
- расчетный вес единицы длины
трубопровода в воздухе с
- нагрузка от веса перекачиваемого продукта, = 0;
Вес балластировки в воздухе определяется по формуле:
, (3.5)
где - удельный вес материала пригрузки.
Значение коэффициента k для трубопровода, покрытого сплошной деревянной футеровкой приведены в таблице 3.1. Для суглинистого грунта, k = 0,40.
Таблица 3.1 - Значения коэффициентов трения трубы о грунт
Характеристика грунта |
k |
Характеристика грунта |
k |
Скальные грунты |
0,65 |
Пески мелки и супеси |
0,45 |
Пески крупные и гравелистые |
0,55 |
Илистые и суглинистые грунты |
0,40 |
При укладке подводных трубопроводов необходимо производить проверку устойчивости трубы против смятия под действием внешнего гидростатического давления воды по формуле:
,
где - средний диаметр трубы, - глубина водоёма; - глубина заложения трубопровода до верхней образующей.
следовательно, устойчивость трубы против смятия обеспечивается.
4. Определение параметров балластировки трубопровода
Балластировка подводных
трубопроводов в пределах участка
подводно-технических работ