Автор работы: Пользователь скрыл имя, 08 Декабря 2013 в 18:59, реферат
В соответствии с назначением гидроузла в его состав могут входить судоходные шлюзы или судоподъёмник, рыбопропускные сооружения, водозаборные сооружения для ирригации и водоснабжения. В русловых ГЭС иногда единственным сооружением, пропускающим воду, является здание ГЭС.
Введение……………………………………………………………………………......3
Общие сведения ГЭС……………………………………………………..3
Классификация гидроэлектростанций…………………………………9
Основное оборудования ГЭС……………………………………………11
1
Электрическое оборудование ГЭС……………………………………..15
Вспомогательное оборудование ГЭС……………………………..........19
Заключение……………………………………………………………………… …22
Список использованной литературы………………………………………….. 23
3. Основное оборудование ГЭС
Оборудование гидроэлектростаций по функциональному назначению делится на несколько групп.
Гидросиловое оборудование – это гидротурбины и гидрогенераторы (на ГАЭС – обратимые гидромашины и двигатель-генераторы).
Вспомогательное оборудование необходимо для обеспечения работы гидросилового оборудования. К нему относятся системы технического водоснабжения, пневматического хозяйства, масляного хозяйства, осушения и т.п.
Механическое оборудование включает в себя затворы, сороудерживающие решетки, грузоподъемные механизмы, краны для обслуживания гидротурбин и гидрогенераторов.
Электротехническое
Кроме этих главных видов оборудования
для нормального
Гидравлическая турбина
(гидротурбина) – это двигатель,
преобразующий энергию
В гидроэнергетике используется энергия воды, сконцентрированная при напорах от нескольких метров до 1500 – 2000 м. для работы в таком широком диапазоне напоров применяются различные системы турбин, отличающиеся формой рабочих органов. Эти системы входят в два класса, различающихся по использованию тех или иных компонентов гидравлической энергии: реактивные турбины используют энергию давления и скоростную энергию; активные – только скоростную энергию.
Названия системам реактивных турбин даны в соответствии с направлением потока по отношению к оси вращения рабочего колеса. Каждая турбина – это гидравлическое устройство с проточной частью, которая у реактивных турбин включает в себя подводящие органы (турбинную камеру, колонны статора, лопатки направляющего аппарата), рабочие органы (лопастную систему рабочего колеса) и отводящие органы (отсасывающую трубу). Турбина имеет невращающиеся и вращающиеся части. К невращающимся относятся закладные части (статор, облицовка камер) и часть рабочих механизмов (направляющий аппарат, крышка турбины, подшипник). Вращающиеся части – это рабочее колесо с валом (основной орган турбины).
Гидрогенератор – это электрическая машина, преобразующая механическую энергию вращения в электрическую.
На ГЭС применяются в качестве генераторов синхронные машины трехфазного переменного тока.
Вращающаяся часть простейшего генератора – ротор – представляет собой двухполюсный электромагнит, магнитное поле которого создается при протекании по обмотке возбуждения постоянного тока от независимого источника. Этот ток подается на ротор через неподвижные щетки, прижатые к вращающимся вместе с ротором контактным кольцам. На статоре размещена силовая обмотка, которая в простейшем случае состоит из одного витка.
Ротор, жестко связанный с валом турбины, вращается с постоянной частотой. За счет магнитного потока ротора в витке обмотки наводится переменная электродвижущая сила. Если к выводам обмотки статора подключить нагрузки, то по обмотке потечет ток, на выводах появится напряжение, которое также будет переменным, изменяющимся по синусоиде.
Основные конструктивные части гидрогенератора – ротор и статор. Обод ротора выполняется в виде металлического кольца с прикрепленными к нему полюсами. В гидрогенераторах полюсы расположены вплотную друг к другу и образуют сплошную наружную цилиндрическую поверхность.
Статор гидрогенератора состоит из сердечника и корпуса. Сердечник является магнитопроводом и представляет собой массивное стальное кольцо, собранное из тонких (до 0,5 мм) листов электротехнической стали. На внутренней поверхности кольца устроены пазы, в которых размещаются стержни силовой обмотки. Сердечник заключен в сварной металлический корпус, крепящийся к строительным конструкциям здания ГЭС. Для возможности перевозки статор крупных гидрогенераторов разделен на несколько (обычно шесть) сегментов, которые соединяются при монтаже.
Ротор – это самый крупный и тяжелый узел генератора, его диаметр может достигать 15 м, масса 1000 т и более. Ротор состоит из обода, полюсов, спиц и втулки. Обод представляет собой массивное кольцо, собранное из большого количества стальных сегментов толщиной 3 – 5 мм. На внешней поверхности обода устраиваются пазы, в которые вставляются и расклиниваются хвостовики металлических сердечников полюсов с надетыми на них катушками обмотки возбуждения. Внутренняя сторона обода соединяется сварными спицами с втулкой, представляющей собой крупную деталь, соединяющую ротор с валом.
Подпятник – наиболее сложный и ответственный узел механической части генератора. Он воспринимает и передает на конструкции здания ГЭС огромные усилия (достигающие нескольких тысяч тонн) от веса вращающихся частей гидроагрегата и давления воды на рабочее колесо турбины; при этом подпятник должен обеспечивать беспрепятственное вращение. Подпятник состоит из вращающегося стального диска (пяты), закрепленного на втулке ротора или вала и опирающегося на неподвижные сегменты. Между диском и сегментами происходит трение в условиях удельных нагрузок, достигающих 5 МПа. Сегменты шарнирно опираются на установочные винты, расположенные на дне масляной ванны, заполненной турбинным маслом. В процессе работы масло охлаждается холодной водой, протекающей через трубки маслоохладителей.
Подшипники передают на фундамент радиальные нагрузки от вала. Подшипник состоит из полированной стальной втулки и прижатых к ней сегментов, которые так же, как в подпятнике, залиты баббитом и помещены в охлаждаемую масляную ванну.
Тормоза необходимы для быстрой остановки гидроагрегата, вращающегося по инерции после отключения генератора и закрытия направляющего аппарата турбины. Система тормозов состоит из диска, укрепленного на роторе, и неподвижных тормозных цилиндров, работающих от сжатого до давления 0,8 МПа воздуха. При подаче воздуха в систему цилиндры прижимают к диску тормозные колодки.
При работе генератора происходит
его нагревание, ограничивающее развитие
мощности, поэтому для генератора
предусматривается
На особо мощных генераторах применяется непосредственное водяное охлаждение, при котором стержни обмоток статора, а иногда и ротора делаются полыми и через них пропускается охлаждаемая в теплообменниках дистиллированная вода.
В зданиях ГЭС и водоприемниках затворы применяются для перекрытия водопропускных отверстий и регулирования пропускания расхода воды.
По функциональному назначению можно выделить несколько видов затворов.
Основные (рабочие) затворы предназначены для регулирования расходов. Они должны открываться и закрываться под напором, в потоке воды. Такие затворы устанавливаются на водосбросах зданий ГЭС совмещенного типа и водоприемниках головных узлов некоторых деривационных ГЭС.
Аварийные затворы применяются в случае аварии с основным затвором, при потере регулирования или повреждении турбины, разрыве водовода. Такие затворы закрываются в потоке под напором, открываются без напора, с предварительным выравниванием уровней перед затвором и за ним после устранения последствий аварии.
Ремонтные затворы устанавливают при выравненных уровнях воды перед затвором и за ним для перекрытия отверстий с последующим осушением водоводов при плановых ремонтах.
Для перекрытия высоких отверстий используют секционные затворы, состоящие из отдельных секций, соединяемых сцепами при опускании затвора.
Различают стационарные затворы, постоянно находящиеся на отверстии, и инвентарные, хранящиеся в затворохранилище. Каждый инвентарный затвор обслуживает несколько отверстий и устанавливается при необходимости в любое из них передвижным краном.
4. Электрическое оборудование ГЭС
На состав и размещение электрического оборудования большое влияние оказывает главная схема электрических соединений, которая выбирается в зависимости от числа и мощности гидроагрегатов и должна обеспечивать надежность энергоснабжения, а также возможность вывода в ремонт части оборудования ГЭС.
На крупных многоагрегатных ГЭС применяют блочные схемы, при которых генератор работает на отдельный повышающий трансформатор. На ГЭС с гидроагрегатами небольшой мощности применяют групповые схемы, при которых два или несколько генераторов выдают мощность на один трансформатор, образуя вместе с ним укрупненный электрический блок. От трансформатора ток повышенного напряжения подается на открытое распределительное устройство (ОРУ), от которого отходят линии электропередачи. К системе генераторного напряжения подключаются понижающие трансформаторы собственных нужд, от которого питаются потребители вспомогательных систем самой ГЭС.
Таким образом, электрооборудование можно условно разделить на три группы по рабочему напряжению: оборудование генераторного напряжения (6,3 – 15,7 кВ), повышенного напряжения (35 – 750 кВ) и пониженного напряжения (0,38 – 6,3 кВ).
Для выполнения переключений, а также отключения части схемы в случае аварии применяется коммутационная аппаратура – выключатели и разъединители. Выключатели способны разрывать цепи при протекании по ним не только рабочего тока, но и во много раз превосходящего его тока короткого замыкания, возникающего при аварии. При разрыве мощной электрической цепи образуется сильная дуга, которую необходимо гасить принудительно. Это делается или в среде трансформаторного масла (масляные выключатели), или мощной струей сжатого воздуха (воздушные выключатели). Разъединители отключают цепи под напряжением, но лишь после снятия с них токовой нагрузки. Выключатели и разъединители генераторного напряжения объединяются в комплектные распределительные устройства (КРУ), размещаемые в помещениях ГЭС.
Генераторы, трансформаторы и коммутационные аппараты соединяются токопроводами. На генераторном напряжении применяют алюминиевые или медные шины, прокладываемые на изоляторах в шинных коридорах. Такой способ прокладки в последнее время почти полностью вытеснен в связи с появлением экранированных шинопроводов, в которых шины размещаются на изоляторах внутри защитного корпуса из дюралюминиевых труб диаметром 700 – 800 мм (для каждой фазы отдельная труба). Трубы заземляются, и поэтому шинопроводы не представляют опасности для людей, что позволяет располагать их без ограждений в помещениях ГЭС.
Высоковольтные выводы от повышающих трансформаторов на ОРУ могут быть воздушными. Они выполняются из сталеалюминиевых проводов, натянутых между металлическими опорами, расположенными на ГЭС и на берегу. Провода подвешиваются к опорам с помощью гирлянд изоляторов. На напряжение 500 кВ и выше каждая фаза во избежание больших потерь на коронный разряд выполняется из трех проводов. Пролеты воздушных переходов достигают 1000 м, натяжения в проводах измеряются десятками тонн. Безопасные расстояния от токоведущих частей выводов до заземленных конструкций зданий составляет 0,9 м при напряжении 110 кВ, 1,8 м при напряжении 220 кВ и 3,75 м при напряжении 500 кВ; до габаритов кранов – соответственно 1,65; 2,5; 4,5; до крыш и до земли 3,6; 4,5; 6,45 м.
В тех случаях, когда по условиям компоновки затруднено устройство воздушных выводов, применяют кабельные высоковольтные выводы. Высоковольтный кабель 500 кВ состоит из стальной трубы диаметром 273 мм, заполненной специальным кабельным маслом под давлением до 1,4 МПа. В трубе проложены в специальной изоляции токоведущие жилы трех фаз. Кабельные выводы дороже воздушных и сложнее в эксплуатации. Применяются также газонаполненные (элегазовые) высоковольтные линии, в которых в качестве изоляционного материала, заполняющего трубу каждой фазы, применен специальный газ – шестифтористая сера.
Открытое распределительное устройство представляет собой площадку, разделенную на ячейки по числу присоединений (выводы от трансформаторов, высоковольтные линии, измерительная аппаратура). Для крепления шин и проводов присоединений устанавливаются металлические или железобетонные порталы, между которыми размещается оборудование. Ориентировочные размеры ячеек в зависимости от напряжения представлены в таблице 1.
Таблица 1.
Габаритные размеры ячеек ОРУ
Напряжение, кВ |
Шаг ячейки (ширина), м |
Длина, м |
35 |
6 |
30 |
110 |
9 |
37 |
220 |
15 |
86 |
500 |
30 |
280 |
В условиях сурового климата или малых площадей применяются закрытые распределительные устройства (ЗРУ) с применением элегазовой защиты, что обеспечивает их компактность.
Трансформаторы, повышающие генераторное напряжение для передачи мощности на ОРУ и далее по высоковольтным линиям потребителям, являются самыми крупными электрическими аппаратами, существенно влияющими на компоновочные решения. Номинальной мощностью трансформатора является полная или кажущаяся мощность Sтр, кВ·А, которая определяется по формуле: