Процесс переработки нефти и газа

Автор работы: Пользователь скрыл имя, 25 Апреля 2014 в 21:57, реферат

Краткое описание

Нефтяная промышленность сегодня - это крупный народнохозяйственный комплекс, который живет и развивается по своим закономерностям. Что значит нефть сегодня для народного хозяйства страны? Это: сырье для нефтехимии в производстве синтетического каучука, спиртов, полиэтилена, полипропилена, широкой гаммы различных пластмасс и готовых изделий из них, искусственных тканей; источник для выработки моторных топлив (бензина, керосина, дизельного и реактивных топлив), масел и смазок, а также котельно-печного топлива (мазут), строительных материалов (битумы, гудрон, асфальт); сырье для получения ряда белковых препаратов, используемых в качестве добавок в корм скоту для стимуляции его роста.

Содержание

Введение
I. Первичная переработка нефти
1. Вторичная перегонка бензиновой и дизельной фракции
1.1 Вторичная перегонка бензиновой фракции
1.2 Вторичная перегонка дизельной фракции
II. Термические процессы технологии переработки нефти
2. Теоретические основы управления процессами замедленного коксования и коксования в слое теплоносителя
2.1 Процессы замедленного коксования
2.2 Коксование в слое теплоносителя
III. Термокаталитические и термогидрокаталитические процессы технологии
переработки нефти
3. Гидроочистка керосиновых фракций
IV. Технологии переработки газов
4. Переработка нефтезаводских газов – абсорбционно-газофракционирующие установки (АГФУ) и газофракционирующие (ГФУ) установки
4.1 Газофракционирующие установки (ГФУ)
4.2 Абсорбционно-газофракционирующие установки (АГФУ)
Заключение
Список используемой литературы

Вложенные файлы: 1 файл

Процесс переработки нефти и газа.doc

— 158.25 Кб (Скачать файл)

Сверху коксовых камер уходят пары продуктов и поступают на ректификацию. Светлые фракции, полученные при коксовании, характеризуются низким качеством из-за большого содержания олефинов и поэтому желательно их дальнейшее облагораживание. 
Выход кокса составляет порядка 25% при коксовании гудрона, выход светлых фракций - около 35%.

Достоинства замедленного коксования - высокий выход малозольного кокса. Из одного и того же количества сырья, этим методом можно получить в 1,5-1,6 раза больше кокса, чем при непрерывном коксовании. Поэтому замедленное коксование применяют, как правило, для производства нефтяного кокса.

Установка замедленного коксования предназначена для получения крупнокускового нефтяного кокса, который используется в производствах цветных металлов, кремния, абразивных материалов, в электротехнической промышленности.

В качестве сырья на установках используют тяжёлые нефтяные остатки, такие как гудрон, мазут, крекинг-остатки, тяжёлая смола пиролиза.

В качестве побочных продуктов на установке замедленного коксования получают углеводородный газ, бензиновую фракцию и газойлевые дистилляты. Полученные газойлевые фракции и бензин коксования перед дальнейшим использованием необходимо подвергнуть гидрооблагораживанию из-за повышенного (по сравнению с прямогонными дистиллятами) содержания непредельных и гетероорганических соединений.

Процесс основан на термолизе тяжелых нефтяных остатков в течение достаточно длительного времени при повышенных температурах (до 500° С), в результате которого образуются легкие фракции крекинга и продукт уплотнения – кокс.

Режим работы коксовой камеры составляет 48 часов: 24 часа коксовая камера заполняется коксом, и в течение 20-22 часов осуществляется выгрузка кокса из коксовых камер при помощи струи воды под высоким давлением (до 14 МПа).

Технологические схемы установок замедленного коксования включают в себя следующие основные блоки:

  • Нагревательный (сюда относится конвекционная секция печи установки, нижняя секция ректификационной колонны, где происходит нагрев продуктами коксования, радиантная секция печи);
  • Реакционный (представляет собой две/четыре полые камеры, работающие попеременно, где непосредственно происходит процесс замедленного коксования тяжёлых нефтяных остатков);
  • Фракционирующий (разделение полученных лёгких фракций коксования: газ, бензин, газойль);
  • Блок механической обработки кокса, его выгрузки, сортировки и транспортировки.

 

2.2 Коксование в слое теплоносителя

 

Процессы коксования в слое теплоносителя имеют существенное преимущество перед процессом замедленного коксования: Сырье, предварительно нагретое в теплообменнике, контактирует в реакторе с нагретым и находящимся во взвешенном состоянии инертным теплоносителем (обычно порошкообразный кокс с размером частиц до 0,3 мм, реже более крупные гранулы) и коксуется на его поверхности в течение 6-12 мин.

Образовавшийся кокс и теплоноситель выводят из зоны реакции и подают в регенератор (коксонагреватель). В последнем слой теплоносителя поддерживается во взвешенном состоянии с помощью воздуха, в токе которого выжигается до 40% кокса, а большая его часть направляется потребителю. Благодаря теплоте, выделившейся при выжигании части кокса, теплоноситель нагревается и возвращается в реактор. Для перемещения теплоносителя используется пневмотранспорт частиц кокса, захватываемых потоком пара или газа. Дистиллятные фракции и газы выводят из реактора и разделяют так же, как при замедленном коксовании. Типичные параметры процесса: температура в теплообменнике, реакторе и регенераторе 300-320, 510-540 и 600-620 °С соответственно, давление в реакторе и регенераторе 0,14-0,16 и 0,12-0,16 МПа соответственно, соотношение по массе сырье теплоноситель = (6,5-8,0).

Коксование в кипящем слое используют для увеличения производства светлых нефтепродуктов. Кроме того, сочетание непрерывного коксования с газификацией образующегося кокса, может быть применено для получения дизельных и котельных топлив.

 

 

III. Термокаталитические и термогидрокаталитические процессы технологии переработки нефти

 

3. Гидроочистка керосиновых фракций

 

Гидроочистка — процесс химического превращения веществ под воздействием водорода при высоком давлении и температуре. Гидроочистка нефтяных фракций направлена на снижение содержания сернистых соединений в товарных нефтепродуктах. Побочно происходит насыщение непредельных углеводородов, снижение содержания смол, кислородсодержащих соединений, а также гидрокрекинг молекул углеводородов. Гидроочистки подвергаются следующие фракции нефти:

 1. Бензиновые фракции (прямогонные и каталитического крекинга);

 2. Керосиновые фракции; 3. Дизельное топливо; 4. Вакуумный газойль; 5. Моторные масла. Гидроочистка керосиновых фракций направлена на снижение содержания серы и смол в реактивном топливе. Сернистые соединения и смолы вызывают коррозию топливной аппаратуры летательных аппаратов и закокcовывают форсунки двигателей. Одновременно снижается коррозионная агрессивность топлив и уменьшается образование осадка при их хранении. Типичным сырьем при гидроочистке керосиновых дистиллятов являются фракции 130—240 и 140— 230°С прямой перегонки нефти. Однако при получении некоторых видов топлив, верхний предел выкипания может достигать 315°С. Целевым продуктом процесса является гидроочищенная керосиновая фракция, выход которой может достигать 96—97% (масс.).

Керосиновая фракция 120—230 (240) °С используется как топливо для реактивных двигателей, при необходимости подвергается демеркаптанизации, гидроочистке; фракцию 150—280 или 150—315 °С из малосернистых нефтей используют как осветительные керосины, фракцию 140—200 °С — как растворитель (уайт-спирит) для лакокрасочной промышленности.

 

IV. Технологии переработки газов

 

4. Переработка нефтезаводских газов – абсорбционно-газофракционирующие установки (АГФУ) и газофракционирующие установки (ГФУ)

 

4.1 Газофракционирующие установки (ГФУ)

 

На НПЗ для разделения нефтезаводских газов применяются преимущественно 2 типа газофракционирующих установок, в каждый из которых входят блоки компрессии и конденсации: ректификационный - сокращенно ГФУ, и абсорбционно-ректификационный АГФУ.

Назначение ГФУ – получение индивидуальных легких углеводородов или углеводородных фракций высокой чистоты из нефтезаводских газов. Газофракционирующие установки (ГФУ) подразделяются по типу перерабатываемого сырья на ГФУ предельных и ГФУ непредельных газов.

Сырье и продукция.

Сырье поступает на ГФУ в газообразном и жидком (головки стабилизации) виде. На ГФУ предельных газов подаются газы с установок первичной перегонки, каталитического риформинга, гидрокрекинга, на ГФУ непредельных газов – с установок термического и каталитического крекинга, коксования.

Продукцией ГФУ предельных газов являются узкие углеводородные фракции:

  • Этановая – применяется как сырье пиролиза, в качестве хладагента, на установках депарафинизации масел, выделения параксилола и др.;
  • Пропановая – используется как сырье пиролиза, бытовой сжиженный газ, хладагент;
  • Изобутановая – служит сырьем установок алкилирования и производства синтетического каучука;
  • Бутановая – применяется как бытовой сжиженный газ, сырье производства синтетического каучука; в зимнее время добавляется к товарным автомобильным бензинам для обеспечения требуемого давления паров;
  • Изопентановая – служит сырьем для производства изопренового каучука, компонентом высокооктановых бензинов;
  • Пентановая – является сырьем для процессов изомеризации и пиролиза.

На ГФУ непредельных газов выделяются следующие фракции:

  • Пропан-пропиленовая – применяется в качестве сырья для установок полимеризации и алкилирования, производства нефтехимических продуктов;
  • Бутан-бутиленовая – используется в качестве сырья установок полимеризации, алкилирования и различных нефтехимических производств.

В блоке ректификации ГФУ из углеводородного газового сырья сначала в деэтанизаторе извлекают сухой газ, состоящий из метана и этана.

На верху колонны поддерживают низкую температуру подачей орошения, охлаждаемого в аммиачном конденсаторе-холодильнике.

 Кубовый остаток деэтанизатора поступает в пропановую колонну, где разделяется на пропановую фракцию, выводимую с верха этой колонны, и смесь углеводородов С4 и выше, направляемую в бутановую колонну. Ректификатом этой колонны является смесь бутанов, которая в изобутановой колонне разделяется на изобутановую и бутановую фракции.

Кубовый продукт колонны подается далее в пентановую колонну, где в виде верхнего ректификата выводится смесь пентанов, которая в изопентановой колонне разделяется на н-пентан и изопентан.

Нижний продукт колонны - фракция С6 и выше - выводится с установки. На АГФУ сочетается предварительное разделение газов на легкую и тяжелую части абсорбционным методом с последующей их ректификацией.

 

4.2 Абсорбционно-газофракционирующие установки (АГФУ)

 

Конденсационно-ректификационный метод заключается в частичной или полной конденсации газовых смесей с последующей ректификацией конденсатов. При необходимости продукты подвергаются дополнительной очистке от меркаптанов раствором щелочи.

Для деэтанизации газов каталитического крекинга на установках АГФУ используется фракционирующий абсорбер. Он представляет собой комбинированную колонну абсорбер-десорбер. В верхней части фракционирующего абсорбера происходит абсорбция, то есть поглощение из газов целевых компонентов (С3 и выше), а в нижней - частичная регенерация абсорбента за счет подводимого тепла. В качестве основного абсорбента на АГФУ используется нестабильный бензин каталитического крекинга. Для доабсорбции унесенных сухим газом бензиновых фракций в верхнюю часть фракционирующего абсорбера подается стабилизированный бензин. Абсорбер оборудован системой циркуляционных орошений для съема тепла абсорбции. Тепло в низ абсорбера подается с помощью «горячей струи». С верха фракционирующего абсорбера выводится сухой газ (С1-С2), а с низа вместе с тощим абсорбентом выводятся углеводороды С3 и выше.

Деэтанизированный бензин, насыщенный углеводородами С3 и выше, после подогрева в теплообменнике подается в стабилизационную колонну, нижним продуктом которого является стабильный бензин, а верхним - головка стабилизации. Из нее (иногда после сероочистки) в пропановой колонне выделяют пропан-пропиленовую фракцию. Кубовый продукт пропановой колонны разделяется в бутановой колонне на бутан-бутиленовую фракцию и остаток (С5 и выше), который объединяется со стабильным бензином.

 

 

Заключение

 

Технологические установки перегонки нефти предназначены для разделения нефти на фракции и последующей переработки или использования их как компоненты товарных нефтепродуктов. Они составляют основу всех НПЗ. На них вырабатываются практически все компоненты моторных топлив, смазочных масел, сырье для вторичных процессов и для нефтехимических производств. От их работы зависят ассортимент и качество получаемых компонентов и технико-экономические показатели последующих процессов переработки нефтяного сырья.

Компоненты, полученные после первичной переработки обычно не используются как готовый продукт. Легкие фракции проходят дополнительно крекинг, реформинг, гидрогенизационное облагораживание, целью которых является получение невысокой ценой наибольшего объема конечных продуктов с наиболее точными удовлетворительными качественными показателями. Тяжелые фракции после перегонки перерабатывают дополнительно на битумных, коксующих и других установках.

 В результате первичной перегонки нефти при атмосферном давлении получаются следующие продукты:

  • Сжиженный углеводородный газ, состоящий в основном из пропана и бутана.
  • Бензиновая фракция.
  • Керосиновая фракция.
  • Дизельная фракция.
  • Мазут.

 

 

Список используемой литературы

 

1. Коршак А. А., Шаммазов А. М.: «Основы нефтегазового дела», издательство «Дизайнполиграфсервис», 2005. – 544с.

2. Шаммазов А. М. и др.: «История нефтегазового дела России», Москва, «Химия», 2001. – 316 с.

3. Ахметов С.А. Технология глубокой переработки нефти и газа. Уфа: «ГИЛЕМ», 2002. – 671с.;

4. Ахметов С. А. и др. Технология и оборудование процессов переработки нефти и газа: Учебное пособие / С. А. Ахметов, Т. П. Сериков, И. Р. Кузеев, М. И. Баязитов; Под ред С. А. Ахметова. – СПб.: Недра,2006. – 868 с.

5. Капустин В. М. Основные каталитические процессы переработки нефти /В.М. Капустин, Е.А. Чернышева. – М.: Калвис, 2006. – 116 с.

6. Мановян А. К. Технология переработки природных энергоносителей. – М.: Химия, КолосС, 2004. – 456 с.

7. Магарил Р.З. Теоретические основы химических процессов переработки нефти: учебное пособие. – М.: КДУ, 2008. – 280 с.

8. Смидович Е.В. Технология переработки нефти и газа. Ч.2-я. -М.: Химия, 1980. – 376с.

 

Размещено на Allbest.ru

 


 



Информация о работе Процесс переработки нефти и газа