Автор работы: Пользователь скрыл имя, 25 Апреля 2013 в 19:04, реферат
Регулирование частоты вращения изменением первичной частоты требует применения специальных источников питания с регулируемой частотой (синхронных генераторов с переменной частотой вращения, полупроводниковых преобразователей и т.п.). Чтобы не уменьшать перегрузочную способность, не ухудшать коэффициент мощности и КПД, при регулировании целесообразно выдержать условие Φ=const. Поэтому из условия U1≈ E1= 4,44f1ω1kоб1Φ следует, что с увеличением f1 надо увеличить напряжение, а с уменьшением f1 - уменьшать. Обычно при регулировании U1/f1=const.
Недостатками
данного способа регулирования
можно считать большую
Однако в ряде случаев в приводах металлообрабатывающих и деревообрабатывающих станков, электроверетен, вентиляторов аэродинамических труб частотное регулирование является единственно возможным.
Кроме описанных существуют другие способы регулирования частоты вращения двигателей: каскадные схемы включения, несимметричное включение статорных и роторных обмоток, изменение питающего напряжения двигателя с помощью магнитных усилителей и тиристоров и другие, которые имеют меньшее распространение по сравнению с описанными выше.
Если обратиться к формуле, связывающей частоту вращения ротора с частотой вращения поля и скольжением,
ωr = ωп(1−S) = |
60f |
(1−S) , |
p |
то из нее следует, что есть всего три варианта регулирования скорости: путем изменения частоты сети f, числа пар полюсов p и скольжения S.
• Наиболее перспективным способом регулирования частоты вращения асинхронного двигателя является частотный. Изменение частоты, подводимой к двигателю, осуществляется преобразователем частоты. При частотном регулировании изменяется синхронная частота вращения (частота вращения поля), а двигатель работает с небольшим скольжением. Регулирование экономичное, однако через преобразователь частоты проходит вся мощность и габариты преобразователя частоты превышают габариты двигателя. При преобразовании частоты и напряжения сети преобразователь частоты изменяет напряжение и частоту на выходе по закону V / f = const, что обеспечивает работу асинхронного двигателя при постоянном магнитном потоке.
• Как видно из формулы, изменяя число полюсов, можно изменять числа оборотов ротора. На этом принципе основана работа многоскоростных асинхронных электродвигателей, применяемых в металлорежущих станках, на элеваторах и транспортерах, в подъемных, крановых и насосных установках.
Двухскоростные электродвигатели можно разделить по кратности отношения скоростей на электродвигатели с отношением скоростей кратным и некратным двум. Первые почти всегда выполняют с одной обмоткой, которая переключается на разные числа полюсов, вторые - с двумя отдельными обмотками.
Многоскоростные электродвигатели могут быть выполнены на 3 или 4 скорости. Чтобы избежать сложных устройств для переключения обмотки ротора, многоскоростные двигатели выполняют с короткозамкнутым ротором.
• Наиболее простым способом, обеспечивающим плавное регулирование частоты вращения асинхронного двигателя, является изменение скольжения. Принципиальным недостатком этого способа регулирования частоты вращения является низкий КПД, так как потери в роторе пропорциональны скольжению. И какие бы ни предлагались варианты схем изменения скольжения, а их существуют десятки, в электромеханическом преобразователе энергии возможности преобразования в теплоту и в механическую мощность одинаковые.
• Применение многоскоростных электродвигателей позволяет упростить передачи; повысить производительность установок; устранить шумы и вибрации от работы зубчатых передач; упростить автоматическое управление процессами пуска, останова, реверсирования и торможения и, наконец, что очень важно, повысить коэффициент полезного действия установки благодаря снижению потерь в передачах.
Информация о работе Регулирование частоты вращения асинхронных двигателей