Роторно-пульсационные аппараты, их схемы и применение в фармацевтической технологии

Автор работы: Пользователь скрыл имя, 02 Августа 2013 в 00:32, курсовая работа

Краткое описание

Под интенсификацией производственных (технологических) процессов в широком смысле понимают получение прямого или косвенного экономического эффекта за счет увеличения производительности, КПД, уменьшения энергоемкости и материалоемкости оборудования, длительности лимитирующих стадий, повышения качества продукта, эргономических и социальных показателей. Все перечисленные параметры являются технико-экономическими и социальными характеристиками (целевыми функциями) интенсификации [6]. При интенсификации ХТП предпринимают целенаправленное изменение какой-либо группы факторов, которые оказывают влияние на целевые функции. Все эти технико-экономические показатели во многом взаимосвязаны друг с другом. Так уменьшение длительности лимитирующих стадий технологического процесса обычно приводит к увеличению производительности, уменьшению энергоемкости и материалоемкости, способствует росту КПД [7].

Содержание

Введение……………………………………………………………………….…..2
1. Характеристика роторно–пульсационных аппаратов (РПА)………………5
2. Технологические параметры РПА…………………………………...………14
2.1. Диаметр аппарата……………...………………………………………...14
2.2. Тепловой параметр
(количество теплоты необходимое для нагрева продукта)……………14
2.3. Производительность аппарата…………………………………………..15
3. Конструктивные параметры……………………………………………….....15
3.1. Зависимости к определению параметров корпуса емкости ………….15
3.2. Толщина цилиндрической обечайки корпуса емкости ….....................17
3.3. Толщина стенки рубашки аппарата……………......................................19
3.4. Параметры цилиндрической теплообменной рубашки…......................20
3.5. Мешалка…………………………………………………..........................20
3.6. Опоры аппарата…………………………………………..........................24
4. Ремонт и монтаж установки…………………………………………………27
5. Применение РПА в фармацевтической промышленности…………………28
5.1. Экстрагирование с помощью РПА………………………………………28
5.2. Диспергирование с помощью РПА……………………………………...31
6. Изготовление линимента бальзамического по Вишневскому
с использованием РПА ………………………………………………………31
Заключение………………………………………………………………….........33
Список литературы…………………………………………………

Вложенные файлы: 2 файла

Роторно-пульсационные аппараты.doc

— 1.30 Мб (Скачать файл)

                                          Содержание

Введение……………………………………………………………………….…..2

1. Характеристика  роторно–пульсационных аппаратов (РПА)………………5

2. Технологические  параметры РПА…………………………………...………14

    2.1.  Диаметр аппарата……………...………………………………………...14

    2.2.  Тепловой параметр

            (количество теплоты необходимое для нагрева продукта)……………14

    2.3.  Производительность аппарата…………………………………………..15

3. Конструктивные параметры……………………………………………….....15

    3.1. Зависимости к определению  параметров корпуса емкости ………….15

    3.2. Толщина цилиндрической обечайки  корпуса емкости ….....................17

    3.3. Толщина стенки рубашки аппарата……………......................................19

    3.4. Параметры цилиндрической теплообменной рубашки…......................20

    3.5. Мешалка…………………………………………………..........................20

    3.6. Опоры аппарата…………………………………………..........................24

4.  Ремонт и монтаж установки…………………………………………………27

5. Применение РПА в фармацевтической  промышленности…………………28

    5.1. Экстрагирование с помощью РПА………………………………………28

    5.2. Диспергирование с помощью РПА……………………………………...31

6.  Изготовление линимента бальзамического  по Вишневскому

     с использованием РПА ………………………………………………………31

Заключение………………………………………………………………….........33

Список литературы……………………………………………………………….34

 

 

 

 

 

                                          

                                             Введение

Интенсификация химико-технологических  процессов (ХТП) является одной из важных задач науки и техники. Основой увеличения производительности оборудования и снижения энергозатрат на проведение ХТП может служить создание и внедрение эффективных технологических аппаратов с малой удельной энергоемкостью и материалоемкостью, высокой степенью воздействия на обрабатываемые вещества. Подобные разработки базируются на принципиально новых инженерных решениях, теоретических и экспериментальных исследованиях физико-химических процессов в обрабатываемых средах при интенсивных импульсных воздействиях [3].

Научной базой для разработки аппаратов  с импульсными энергетическими воздействиями на обрабатываемые вещества должна стать новая методология, учитывающая взаимное влияние энергетических полей, физико-химических эффектов, трансформацию и инверсию видов энергетического воздействия. Учитывая многогранность этих задач, актуальным является анализ комбинаций воздействий и их влияния на интенсивность ХТП. Проблемой, сдерживающей разработку аппаратов для интенсификации ХТП и методов их расчета, является недостаточность систематизации и комплексности в подходе к интенсификации химико-технологических процессов при импульсных энергетических воздействиях, в исследовании комплекса физических, физико-химических и химических явлений, возникающих в обрабатываемых веществах [1].

Анализ физико-химических эффектов, возникающих при акустическом, механическом, электрическом, магнитном, тепловом, радиационном и химическом воздействиях на вещества показал, что эти воздействия вызывают изменение агрегатного состояния (полное или частичное), изменение физико-химических свойств сплошной фазы, дробление или коагуляцию дисперсных частиц, гомогенизацию среды. Правильно выбранное и управляемое воздействие способствует интенсификации ХТП [2].

Анализ физических воздействий и физико-химических эффектов, возникающих в результате этих воздействий, позволил выявить общие закономерности их проявления. Приведены описания принципа действия и конструкций машин и аппаратов с импульсными энергетическими воздействиями на обрабатываемые вещества [16].

Увеличение скорости технологического процесса и производительности технологического оборудования, снижение его энергоемкости и материалоемкости, улучшение качества продукта – это основные цели, которые ставят перед собой проектировщики и конструкторы при разработке новых или модернизации известных конструкций машин и аппаратов. Для достижения этих целей разрабатывается и изготавливается новое высокоэффективное оборудование, применяются различные физико-химические эффекты и явления на основе научно-технического прогресса и новых технологических подходов в производстве различных продуктов [4].

Одними из наиболее эффективных  способов и методов при решении подобных задач являются импульсные энергетические воздействия на обрабатываемые вещества. Технологическое оборудование, использующее эти эффекты, активно применяется в различных отраслях промышленности, особенно в химической и смежных с ней технологиях.

Под интенсификацией производственных (технологических) процессов в широком смысле понимают получение прямого или косвенного экономического эффекта за счет увеличения производительности, КПД, уменьшения энергоемкости и материалоемкости оборудования, длительности лимитирующих стадий, повышения качества продукта, эргономических и социальных показателей. Все перечисленные параметры являются технико-экономическими и социальными характеристиками (целевыми функциями) интенсификации [6]. При интенсификации ХТП предпринимают целенаправленное изменение какой-либо группы факторов, которые оказывают влияние на целевые функции. Все эти технико-экономические показатели во многом взаимосвязаны друг с другом. Так уменьшение длительности лимитирующих стадий технологического процесса обычно приводит к увеличению производительности, уменьшению энергоемкости и материалоемкости, способствует росту КПД [7].

В настоящее время одним из перспективных  методов интенсификации химико-технологических  процессов и повышения эффективности  технологического оборудования (ТО) признаются методы, основанные на импульсных энергетических воздействиях с применением различных физико-химических эффектов, использующих внутренние и внешние источники энергии [9].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   1.  Характеристика роторно-пульсационных аппаратов (РПА)

В последнее время появилось  много зарубежных и отечественных  конструкций РПА различных типов — погружного, встроенного и проходного (проточного) типов.

РПА погружного типа обычно выполняются  в виде мешалок, помещаемых в емкость  с обрабатываемой средой. Для повышения  эффективности перемешивания погружных  РПА иногда устанавливают дополнительно к имеющимся мешалкам других типов (например, якорный).

Погружные РПА серийно выпускаются  отечественной промышленностью  под названием гидродинамических  аппаратов роторного типа, а также  рядом зарубежных фирм. Несмотря на конструктивную простоту погружных РПА, они не обеспечивают достаточно однородной обработки всей массы продукта.

Наибольшее распространение получили РПА проточного типа, рабочие органы которых смонтированы в небольшом  корпусе, имеющем патрубки для входа  и выхода обрабатываемой среды. При этом в большинстве конструкций обрабатываемая среда поступает по осевому патрубку во внутреннюю зону устройства и движется в нем от центра к периферии. Известны конструкции РПА, в которых обрабатываемая среда движется в обратном направлении, перемещаясь от периферии к центру. При таком движении степень турбулизации потока возрастает, одновременно с этим повышаются гидравлическое сопротивление аппарата, затраты электроэнергии и разогрев обрабатываемой среды. Отдельные модификации РПА могут иметь рабочие камеры с различным направлением движения потока [15].

РПА различных типов могут быть выполнены с вертикальным или  горизонтальным приводным валом. Вертикальный вал имеет большинство погружных  РПА, а также некоторые проточные  РПА. Большинство проточных РПА выполняются с горизонтальным валом.

По количеству рабочих камер  РПА могут быть однокамерными  и многокамерными. Однокамерные аппараты имеют два диска с концентрическими рядами зубьев или цилиндрами с прорезями. Один или оба диска вращаются. В многокамерных аппаратах имеется более двух дисков с зубьями или перфорированными цилиндрами, в результате чего образуется две или более зоны активной обработки среды.

Кроме основных рабочих органов (цилиндров  с прорезями, дисков), РПА могут  иметь дополнительные рабочие органы, предназначенные для повышения эффективности их работы. Часто в качестве дополнительных элементов используют лопасти-ножи, устанавливаемые на роторе, статоре или корпусе. Лопасти на роторе позволяют значительно улучшить напорно-расходные характеристики РПА, повысить эффективность обработки потока во внутренней зоне и создать дополнительные ступени обработки [14]. Повышение эффективности РПА может быть достигнуто за счет установки в рабочем пространстве дополнительных рабочих органов, не связанных жестко с основными органами. В этом случае используют диспергирующие и другие дополнительные тела, обеспечивающие повышение эффективности диспергирования и степени турбулизации потока. Наличие инертных тел — шаров, бисера, колец и др., приводит к дополнительной интенсификации проводимых процессов измельчения [20].

Роторно-пульсационный аппарат (РПА) (рис.1.1) сочетает в себе принципы работы диспергатора, гомогенизатора и центробежного насоса. Путем пульсационных, ударных и других гидродинамических воздействий происходящих в РПА, изменяются физико-механические свойства производимых продуктов, снижается энергопотребление за счет интенсификации технологических процессов.

Роторно-пульсационные аппараты могут  поставляться в виде автономных роторно-пульсационных установок. Роторно-пульсационные установки предназначены для тонкого измельчения, многократного перемешивания многокомпонентных (жидких и сухих) сред с целью получения высокодиспергированных эмульсий и суспензий, мазей, линиментов, а так же для интенсификации процессов экстрагирования [15].

Рис. 1.1. Роторно-пульсационный аппарат (внешний вид).

Принцип работы ротора заключается  в следующем. Обрабатываемая жидкость подается под давлением или самотеком  через входной патрубок 1 (рис. 1.2), в полость 2, проходит через каналы ротора 3, каналы статора 4, рабочую камеру 5 и выходит из аппарата через выходной патрубок 6.

 При вращении ротора его каналы периодически совпадают с каналами статора. Выходя из канала статора, жидкость собирается в рабочей камере и продвигается к выходному патрубку. В период времени, когда каналы ротора перекрыты стенкой статора, в полости ротора давление возрастает, а при совмещении канала ротора с каналом статора давление за короткий промежуток времени сбрасывается и в результате этого в канал статора распространяется импульс давления [18]. Скорость жидкости в канале статора является переменной величиной. При распространении в канале статора импульса избыточного давления, вслед за ним возникает кратковременный импульс пониженного ("отрицательного") давления, так как совмещение каналов ротора и статора завершилось, и подача жидкости в канал статора происходит только за счет транзитного течения из радиального зазора между ротором и статором. Объем жидкости, вошедший в канал статора, стремится к выходу из канала, и инерционные силы создают растягивающие напряжения в жидкости, что вызывает кавитацию. Кавитационные пузырьки растут при воздействии импульса пониженного давления и схлопываются или пульсируют при увеличении давления в канале статора. Часть кавитационных пузырьков выносится в рабочую камеру [19].

В связи с тем, что  скорость потока жидкости в канале статора велика и имеет флуктуации, поток является турбулентным. При  вращении ротора в зазоре между ротором и статором возникают большие сдвиговые напряжения. Рабочие поверхности ротора и статора воздействуют на жидкую гетерогенную среду за счет механического контакта, создавая высокие срезывающие и сдвиговые усилия [11].

 

Рис. 1.2 – Схема пульсационного аппарата

                 роторного типа (диспергатора).

Пульсационные аппараты роторного  типа (ПАРТ) (или диспергаторы) различных видов и модификаций нашли применение в гидромеханических и тепломассообменных процессах за счет широкого спектра факторов воздействия:

- механическое воздействие на частицы гетерогенной среды, заключающееся в ударных, срезывающих и истирающих нагрузках и контактах с рабочими частями ПАРТ;

- гидродинамическое воздействие, выражающееся в больших сдвиговых напряжениях в жидкости, развитой турбулентности пульсациях давления и скорости потока жидкости;

- гидроакустическое воздействие на жидкость осуществляется за счет мелкомасштабных пульсаций давления, интенсивной кавитации, ударных волн и вторичных нелинейных акустических эффектов [15].

Пульсационные аппараты роторного типа используются для обработки таких систем, как "жидкость - жидкость", "жидкость - твердое тело" и "газ - жидкость". Для каждого конкретного технологического процесса существуют определенные предпочтения в типе конструктивного и технологического оформления ПАРТ.

Общим недостатком ПАРТ является наличие "холостого хода", времени работы, когда каналы статора перекрыты  промежутками между каналами ротора.

 В этот момент возникают  транзитные течения через радиальный зазор между ротором и статором, уменьшающие гидравлическое сопротивление аппарата и, в конечном счете, уменьшающие интенсивность акустических колебаний.

Чтобы избавиться от этого  недостатка, в ПАРТ, обеспечивающих самостоятельный напор, предлагается конструкция статора, в котором чередуются глухие и сквозные каналы. Глухие каналы снабжены дополнительными каналами, соединяющими их с патрубками входа среды и расположенными в крышке аппарата. Таким образом, в аппарате имеется основной источник колебаний - прерыватель со сквозными каналами в статоре и дополнительный - с глухими дополнительными каналами [5].

На рисунке 1.3 изображен  ПАРТ, содержащий корпус 1 с патрубком выхода 2, крышку 3 с коаксиально расположенным патрубком входа 4, скрепленную с корпусом 1, статор 5 с глухими каналами 6 в боковой стенке, соединенными  дополнительными каналами 7, расположенными в крышке 3, с патрубком входа 4, и сквозными каналами 8, ротор 9 с каналами 10 в боковой стенке, рабочую камеру 11, образованную корпусом 1, крышкой 3 и статором 5.

Федеральное агентство по здравоохранению и социальному развитию РФ.doc

— 24.00 Кб (Просмотреть документ, Скачать файл)

Информация о работе Роторно-пульсационные аппараты, их схемы и применение в фармацевтической технологии