Электродуговая сварка

Автор работы: Пользователь скрыл имя, 21 Февраля 2013 в 12:29, реферат

Краткое описание

Сваркой называют технологический процесс получения механически неразъемных соединений, характеризующихся непрерывностью структур – непрерывной структурной связью.
Это технологический процесс, с помощью которого изготавливаются все основные конструкции гидротехнических сооружений, паровых и атомных электростанций, автодорожные, городские и железнодорожные мосты, вагоны, наводные и подводные корабли, строительные металлоконструкции, всевозможные подъемные краны и многие другие изделия.

Вложенные файлы: 1 файл

referat.doc

— 670.00 Кб (Скачать файл)


Введение

Сваркой называют технологический  процесс получения механически  неразъемных соединений, характеризующихся  непрерывностью структур – непрерывной  структурной связью.

Это технологический процесс, с  помощью которого изготавливаются  все основные конструкции гидротехнических сооружений, паровых и атомных электростанций, автодорожные, городские и железнодорожные мосты, вагоны, наводные и подводные корабли, строительные металлоконструкции, всевозможные подъемные краны и многие другие изделия.  Если некоторое время тому назад конструкции изготавливались в основном из относительно просто сваривающихся материалов, то в настоящее время, наряду с традиционными, для сварных конструкций применяются материалы с весьма различными физическими характеристиками:  коррозионно-стойкие и жаропрочные стали и сплавы,  никелевые и медные сплавы с особыми свойствами, лёгкие сплавы на алюминиевой о магниевой основах, титановые сплавы, ниобий, тантал и другие металлы и сплавы.

   Многообразие свариваемых  конструкций и свойств материалов, используемых для изготовления, заставляют применять различные способы сварки, разнообразные сварочные источники теплоты. Для сварочного нагрева и формирования сварного соединения используются: энергия, преобразованная в тепловую посредством дугового разряда, электронного луча, квантовых генераторов;  джоулево тепло, выделяемое протекающим током по твёрдому или жидкому проводнику; химическая энергия горения, механическая энергия, энергия ультразвука и других источников.

     Все эти способы  требуют разработки, производства и правильной эксплуатации разнообразного оборудования, в ряде случаев с применением аппаратуры, точно дозирующей энергию, со сложными схемами, иногда с использованием технической электроники и кибернетики. Разнообразие способов сварки, отраслей промышленности, в которых её используют, свариваемых материалов, видов конструкций и огромные объёмы применения позволяют охарактеризовать технологический процесс сварки, как один из важнейших  в металлообработке.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.Электродуговая сварка

 

1.1.Общие сведения

В 1802 г. русский физик В. В. Петров первым в мире открыл явление дугового разряда и возможность использовать его для расплавления металла. В 1882 г. русский инженер Н. Н. Бенардос изобрел способ дуговой сварки . с применением угольного электрода (рис. 1). Один провод электросварочной цепи присоединяется к свариваемому металлу 5, другой — к держателю 4 с угольным неплавящимся электродом 3. Чтобы образовать сварной шов или наплавленный слой, в дугу 1 вводят присадочный металлический пруток 2. Для сварки угольным электродом требуется только постоянный ток и применение присадочного прутка. Это усложняет процесс, и особенно широкого распространения такой вид сварки не получил. Его применяют при сварке чугуна, цветных металлов, при наплавке твердыми сплавами и электродуговой резке.

В 1888 г. русский инженер  Н. Г. Славянов изобрел дуговую сварку плавящимся металлическим электродом. Процесс значительно упростился, его начали применять более широко. Для получения электросварочной дуги используют постоянный и переменный ток. Этим способом можно сваривать и наплавлять углеродистые и легированные стали всех марок толщиной от 1 м и выше, чугун и цветные металлы, а   также   наплавлять   твердые   сплавы. Горение любой сварочной дуги сопровождается выделением большого количества теплоты. Температура дуги на оси газового столба достигает 6000...7500°С, на участках поверхности угольных электродов (пятнах электродов) — 3000... 4000°С, стальных — 22ОО...25ОО°С. При сварке на постоянном токе угольными электродами температура дуги на аноде достигает 4000°С и на катоде 3200°С, при использовании стальных электродов — на аноде 2600°С, на катоде 2400°С. Поэтому при. сварке тонкого или легкоплавкого металла, а также чувствительных к перегреву высокоуглеродистых, нержавеющих и легированных сталей электрическую дугу питают током обратной полярности, то есть минус источника тока подключают к изделию.

Температура дуги зависит от силы тока, приходящейся на единицу площади поперечного сечения электрода, — плотности тока. Чем она больше, тем выше температура дуги. При ручной дуговой сварке плавящимся электродом плотность тока от 10 до 20 А/мм2 и напряжение 18...20 В.

В ремонтной практике для сварочных  работ используют переменный к постоянный ток. Сварочная дуга на переменном токе малой плотности горит неустойчиво. Чтобы повысить стабильность дуги, увеличивают плотность тока. По этой причине при сварке мелких деталей возрастает опасность их прожигания, однако из-за простоты источников питания сварку на переменном токе применяют достаточно широко. При сварке на постоянном токе дуга горит стабильно. Это позволяет использовать малые токи и сваривать тонкие детали, а кроме того, можно изменять полярность тока. Поэтому, несмотря на более сложное и дорогое оборудование источников питания, постоянный ток применяют в практике все шире.

Производительность сварки характеризуют количеством расплавленного электродного металла в единицу времени, которое определяют по формуле

 

,

где

— количество расплавленного металла электрода, г; Кн — коэффициент наплавки, г/(А- ч); I — сварочный ток, А.

Коэффициент наплавки зависит  от присадочного материала, материала  электродов и состава их покрытия, рода и полярности тока, а также от потерь при сварке. Для различных условий коэффициент наплавки находят опытным путем. При ручной сварке он колеблется в пределах от 6 до 18 г/ (А • ч) или составляет в среднем 8...12 г/(А • ч).

Под действием высокой температуры  в зоне сварки молекулы кислорода и азота, попадающие из воздуха, частично распадаются на атомы. Кислород образует  оксиды железа и способствует выгоранию ценных легирующих элементов (марганца, кремния и др.), тем самым резко ухудшая свойства наплавленного слоя. Азот образует нитриды, которые увеличивают твердость, снижают пластичность и способствуют образованию коробления и трещин. Водород, попадающий в зону сварки из влаги и ржавчины, способствует образованию пор и трещин. Чтобы уменьшить вредное воздействие этих элементов, место сварки зачищают, а зону сварки защищают нейтральными газами и шлаками.
















  

  

                                                         Рис.1. Схема сварки по способу Бенардоса Н.Н.:

                                                          1    —   электрическая   дуга;   2   —   присадочный   пруток;

                                                        3  —    угольный электрод;  4 — держатель;    5 —    свариваемый металл.

 

 

 

 

 

 

1.2.Сварочная проволока и электроды

Качество наплавленного материала и производительность процесса сварки или наплавки во многом определяются материалом электродов и их покрытий. В зависимости от способа сварки применяют сварочную проволоку, плавящиеся и неплавящиеся электродные стержни, пластины и ленты. Наибольшее применение в качестве электродного материала находит выпускаемая промышленностью электродная сварочная проволока. При механизированных способах сварки ее используют без покрытия, а для ручной дуговой сварки проволоку рубят на стержни длиной 350...400 мм и на их поверхность наносят покрытие. Плавящийся стержень с нанесенным на его поверхность покрытием называют сварочным электродом.

Стальная сварочная  проволока изготавливается диаметром от 0,3 до 12 мм. В зависимости от химического состава стальную сварочную проволоку разделяют на    низкоуглеродистую, легированную и высоколегированную.

Низкоуглеродистые проволоки Св-08, Cв-G8A, Св-08ГА, Св-10ГА и другие — всего шесть марок, содержащие не более 0,12% углерода, предназначены для сварки мало- и среднеуглеродистых, а также некоторых низколегированных сталей.

Легированные  проволоки Св-08Г2С, Св-08ХН2М, Св-08ХГСМФА и другие включают в себя до шести легирующих элементов с их общим содержанием не более 6%. Эти проволоки применяют для сварки и наплавки углеродистых и легированных сталей. Проволоки марок Св-15ГСТЮЦА и Св-20ГСТЮА можно использовать для изготовления стержней и применять при сварке без дополнительной защиты.

Высоколегированные  проволоки Св-12X13, Св-06Х19М9Т и другие — всего 41 марка — содержат в своем составе легирующих элементов более 6%. Эти проволоки применяют для сварки нержавеющих, жаростойких и других специальных сталей.

Сварочные электроды  выпускаются промышленностью как  плавящиеся, так и неплавящиеся. Угольные неплавящиеся электроды изготавливают в виде стержней длиной до 300 мм и ди-.1 метром от 6 до 30 мм. Плавящиеся электроды, занимающие ведущее место в сварке, выпускают покрытыми различными элементами /urn защиты зоны сварки. По своему назначению покрытия электродов делят на стабилизирующие, или тонкие, и качественные, или толстые.

Стабилизирующие покрытия содержат вещества, атомы которых легко ионизируются и поддерживают устойчивое горение дуги, а также облегчают ее возбуждение, особенно при сварке на переменном токе. Лучше всего ионизируются пары калия, а также кальция, который входит в состав мрамора и мела в виде углекислого кальция СаСОз. Наиболее простое и распространенное стабилизирующее покрытие — меловое: на 15...20 частей по массе натрового жидкого стекла берут 80...85 частей мела. Покрытие наносят на электрод тонким слоем — 0,1-0,3 мм, и оно составляет 1...2% от массы электрода. Стабилизирующие покрытия не защищают наплавляемый металл от кислорода и азота воздуха, поэтому сварной шов получается сравнительно хрупким, со многими посторонними включениями.

Качественные  защитные покрытия предохраняют наплавленный слой от кислорода и азота окружающего воздуха, а легирующие элементы, входящие в состав покрытия, позволяют получить сварной шов, не уступающий по механическим свойствам основному металлу, а иногда и превосходящий его. Эти покрытия наносят на электрод слоем 0,7...2,5 мм, и они составляют 30...75% массы электрода.

Электроды в зависимости  от отношения наружного диаметра D к диаметру его стержня dЭ подразделяют на несколько групп: М — с тонким покрытием (D : dЭ ) < 1,2), С — со средним покрытием ( D:dЭ ) 1,45), D — с толстым покрытием (D:dЭ 1,80), Г — с особо толстым покрытием (D:dЭ > 1,80).

Защитные качественные покрытия по составу основных входящих в них веществ делят на группы: А — с кислым покрытием; Б — с основным покрытием; Ц — с целлюлозным покрытием; Р — с рутиловым покрытием; П — с покрытием прочих видов.

В соответствии с ГОСТ 9467—75 электроды для ручной дуговой сварки подразделяют на несколько типов, в каждый из которых входит несколько марок, обеспечивающих определенное качество сварочного шва.

Электроды типа Э42, Э42А, Э46, Э46А, Э50 и Э50А (марки АНО-1, АНО-5, УОНИ-13/45, УОНИ-13/55 и др.) предназначены для сварки углеродистых и низколегированных сталей с временным сопротивлением разрыву до 500 МПа. Буква А указывает на то, что электрод дает сварочный шов повышенного качества по пластичности и ударной вязкости.

Электроды типа Э55 и Э60 (марки УОНИ-13/55У  и УОНИ-13/65) используют для сварки сталей с временным сопротивлением разрыву до 600 МПа.

Электроды типа Э70, Э85, Э100 и Э150 (марки УОНИ-13/85, НИАТ-3, НИАТ-ЗМ и др.) используют для сварки сталей высокой прочности с временным  сопротивлением разрыву свыше 600 МПа.

Электроды типа Э-09МХ, Э-09Х1МФ, Э-10ХЗМ16Ф и другие предназначены  для сварки легированных высококачественных и теплоустойчивых сталей. К этим типам относят электроды марок  ЦЛ-55, ЦЛ-20, ЦЛ-36, ЦЛ-26М и др.

Электроды типа Э-10Г2, Э-12Г4, Э-30Г2ХМ и другие (марки ОЗН-З00У, ОЗН-400У и др.) используют преимущественно для наплавки деталей, работающих в тяжелых условиях ударных нагрузок и повышенного износа.

 

1.3.Выбор электродов  и рода тока

Выбор электродов и рода тока зависит  от толщины и химического состава свариваемого материала, от конфигурации детали, расположения накладываемых швов и других факторов. Поэтому марку электрода в каждом конкретном случае должен выбирать квалифицированный специалист по сварке. Общие же положения по выбору электродов, силы и рода тока можно свести к следующему.

Детали толщиной более 5 мм хорошо сваривать на переменном токе. Стальные детали толщиной менее 5 мм, а также чугун и цветные  металлы лучше варить на постоянном токе. При сварке на постоянном токе стабильно горение дуги на малых токах и, кроме того, можно маневрировать полярностью тока. Если сваривают тонкие детали, то, чтобы избежать прожога, их подключают к катоду (на минус), а электрод — к аноду (на плюс). При сварке толстых деталей анод подключают к детали, а катод — к электроду.

Толщину стержня электрода выбирают в зависимости от толщины свариваемой детали. Для сварки металла большей толщины берут электрод с более толстым стержнем и, наоборот, тонкие детали сваривают более тонким стержнем электрода. В ремонтной практике используют преимущественно электроды со стержнем диаметром от 2 до 5 мм.

Силу тока выбирают в зависимости  от толщины стержня электрода по формуле

 

I = (40...50) dЭ

 

где I — значение сварочного тока, A; dЭ — диаметр стержня электрода, мм.

 

1.4.Аргонно-дуговая сварка

Аргонно-дуговая сварка — разновидность  сварки в инертных газах. Сущность ее заключается в том, что зону сварки и электрод защищают от воздуха аргоном, гелием или их смесями. Инертные газы хорошо ионизируются и создают условия  для устойчивого горения дуги. Так как из инертных газов наибольшее распространение получил аргон, сварку называют аргонно-дуговой.

Информация о работе Электродуговая сварка