Автор работы: Пользователь скрыл имя, 21 Февраля 2013 в 12:29, реферат
Сваркой называют технологический процесс получения механически неразъемных соединений, характеризующихся непрерывностью структур – непрерывной структурной связью.
Это технологический процесс, с помощью которого изготавливаются все основные конструкции гидротехнических сооружений, паровых и атомных электростанций, автодорожные, городские и железнодорожные мосты, вагоны, наводные и подводные корабли, строительные металлоконструкции, всевозможные подъемные краны и многие другие изделия.
Горелка прямого действия. Дуга, горящая между неплавящимся вольфрамовым электродом б (рис. 8) и деталью 1, подключенной к аноду, сжимается узким каналом водоохлаждаеомого сопла 2 и плазмообразующим газом, поступающим в пространство 5. Часть газа, проходя через столб сжатой дуги, ионизируется и выходит из сопла в виде плазменной струи. Температура плазменной струи, образующейся в горелке прямого действия, может достигать более 30 000°С. Такую схему применяют при резке металлов и других операциях, требующих повышенного нагрева детали.
Горелка косвенного действия. Дуга горит между неплавящимся электродом 6 (рис. 8, б) и водоохлаждаемым соплом 2. Нагретый и в значительной степени ионизированный газовый поток выходит из сопла в виде яркого факела пламени температурой до 16 000°С. Здесь большая часть энергии расходуется на нагрев газового потока, но интенсивность его теплового воздействия ниже, так как с возрастанием тока увеличиваются поверхность столба свободной дуги и теплопередача в окружающую среду. Схему косвенного действия дуги применяют для поверхностной закалки, металлизации и напыления тугоплавких металлов и соединений.
Горелка комбинированного действия. Горят две дуги — между неплавящимся вольфрамовым электродом и водоохлаждаемым каналом и между тем же электродом и деталью. Эта схема получила распространение при наплавке деталей порошком, вдуваемым в струю плазмы. Выпускаемые горелки могут работать по любой из описанных трех схем.
В горелках прямого действия затруднено возбуждение дуги между электродом и деталью через узкий канал сопла. Поэтому в таких случаях при помощи осциллятора или угольного стержня возбуждают вспомогательную (дежурную) дугу между электродом и соплом (рис. 8, а), которая питается через ограничивающее сопротивление R от того же источника 4, что и основная дуга. Как только разогретая вспомогательная дуга коснется детали, автоматически загорается основная дуга и выключается вспомогательная.
Истечение плазменной струи из сопла с высокой скоростью увеличивает приток газов из окружающего воздуха в зону сварки, и поэтому горелки снабжают газозащитными соплами 3. Кроме того, их применяют для вторичного обжатия засоплового участка плазменной струи, а иногда и для фокусирования струи (рис. 8, в). Такие горелки называют микроплазменными, так как они позволяют получить остроконечную дугу в области малых токов порядка 0,5…30 А.
Характерные особенности плазменной струи — высокая температура факела; возможность концентрации большой тепловой мощности на небольших объемах материалов; пригодность для плавления и даже испарения практически любых материалов, встречающихся в природе; меньшая, чем при других видах наплавки, зона термического влияния и возможность получения наплавленного слоя толщиной от 0,10 мм до нескольких миллиметров.
Применение различных электрических схем для образования плазменной струи позволяет использовать разные присадочные материалы (проволоку, прутки, порошки и т.д.), в широком диапазоне раздельно регулировать плавление присадочного и основного материала, получать наплавленные слои различных материалов с минимальной глубиной проплавления. Получены хорошие результаты наплавки бронзы, меди и латуни на сталь. Содержание в слоях железа не превышает 0,5%. На малоуглеродистые и низколегированные стали наплавляют любые износостойкие материалы с минимальными примесями основного металла.
Как показывает практика, при помощи плазменной струи, кроме нанесения покрытий, выполняют сварку, резку и точение металлов, а также проводят металлургические процессы плазменнным нагревом.
Рис. 8. Схемы плазменных горелок:
а — прямого действия; б — косвенного действия; в — микроплазменной; 1 — деталь; 2 — водоохлаждаемое сопло; 3 — газозащитное сопло; 4 — источник питания; 5 — камера для плазмообразующего газа; 6 — электрод; 7 — фокусирующее сопло.
5.2.Плазмообразующие газы,
электроды и присадочные
В качестве плазмообразующего газа используют аргон, азот, гелий и др. Лучшим считается аргон, а наиболее дешевым — азот. Для защиты зоны наплавки применяют эти же газы, их смеси, а также углекислый газ.
В качестве неплавящегося электрода в горелках всех типов используют вольфрамовые стержни. Более стойкие — вольфрамовые стержни с присадкой 1...2% оксида лантана.
Наплавочными материалами
5.3.Оборудование для плазменной наплавки
Оборудование для плазменной наплавки включает в себя источник питания током, плазменную горелку, пульт управления и контроля, балластные реостаты, дроссель, механизм для подачи порошка или проволоки, системы циркуляции воды, баллоны с плазмообразующим и защитным газами и станок для перемещения детали и плазменной горелки.
Источники питания. В качестве источников питания током используют специальные полупроводниковые выпрямители типа ИПН-100/600, а также сварочные преобразователи постоянного тока и выпрямители с напряжением холостого хода не ниже 120 В и крутопадающей характеристикой. Для регулирования тока используют балластные реостаты типа РБ-300.
Рис. 9. Плазменная горелка и схема нап
1— пруток (проволока); 2 — защитное сопло; 3 — рабочее сопло;
4 — вольфрамовый электрод; 5 — каналы подвода воды
и тока; 6 — канал для защитного газа.
Плазменные горелки. Конструкция плазменных горелок во многом зависит от их назначения и схемы плазмообразования. На рисунке 9 показана горелка для наплавки
прутками твердых сплавов. Горелка при наплавке перемещается впереди прутка. Сварочная ванна защищается аргоном, подаваемым через канал 6.
Вместо литых прутков 1 можно применять для наплавки различные сварочные проволоки. Режим наплавки подбирают опытным путем. Например, при наплавке сателлитов выдерживается такой режим: ток дежурной (закрытой) дуги 15...20 А, ток основной дуги 120...130 А, напряжение дуги 40...45 В, расход плазмообразующего и защитного газа (аргона) 8...10 дм3/мин, диаметр вольфрамового электрода 3 мм и диаметр сопла 8 мм. При наплавке деталей с использованием порошков применяют горелки другого конструктивного исполнения.
Пульт управления выполнен в виде шкафа, в котором размещена электрическая и газовая аппаратура -для управления процессом и его контроля.
Прочее оборудование. При наплавке с использованием порошков применяют специальные порошковые питатели, а при наплавке проволокой — механизмы, аналогичные механизмам подачи проволоки в обычных сварочных автоматах. Охлаждают плазменные горелки от водопроводной сети с подачей воды не менее 5 л/мин.
Цилиндрические и другие детали наплавляют на переоборудованных токарных или специальных наплавочных станках, аналогичных станкам, на которых ведут автоматическую дуговую сварку.
На ремонтных предприятиях наплавкой с применением плазменной струи восстанавливают изношенные посадочные места под подшипники на валах и осях, наружные шлицы, коленчатые валы, фаски клапанов автотракторных двигателей и другие детали.
6.Основы техники безопасности при сварочных работах
К работе по газопламенной обработке, обслуживанию оборудования и производства технического ацетилена допускаются лица не моложе 18 лет, прошедшие соответствующее медицинское обследование, обучение, инструктаж и проверку знаний безопасности.
Все приступающие к сварке, наплавке, резке и пайке должны быть проинструктированы по технике безопасности и пожароопасности, в том числе о вредных факторах, образующихся при этих процессах, мерах предосторожности, средствах индивидуальной защиты и личной гигиены. Проведенный инструктаж должен регистрироваться в специальном журнале.
Повторный инструктаж и проверка знаний по технике безопасности и производственной санитарии проводятся не реже одного раза в квартал с отметкой в специальном журнале и личной карточке сварщика.
Требования безопасности при газопламенных работах. Газопламенные работы (сварка, резка, строжка, выплавка пороков металла, нагрев изделий и др.) должны производиться на расстоянии не менее 10 м от передвижных генераторов, 5м — от баллонов, и бачков с жидким горючим, 1,5 м — от газопроводов и газоразборных постов. В случае направления пламени и искр в сторону источников питания должны быть приняты меры по защите их от искр или воздействия теплоты пламени путем установки металлических ширм.
Запрещается: