Автор работы: Пользователь скрыл имя, 04 Декабря 2013 в 18:40, лекция
Если посмотреть, как совершались восхождения в недалеком прошлом, то нетрудно заметить, что происходят значительные изменения. Научно-технический прогресс неуклонно меняет облик горовосхождений. Меняется качество горного снаряжения, применяются новые материалы и технологии, а это немедленно отражается на технике восхождений. То, что вчера было совершенно невозможным, сейчас кажется обычным и традиционным. Данная работа рассматривает вопросы применения веревки и технику страховки, что является важнейшими вопросами обеспечения безопасности в альпинизме, туризме, скалолазании и в некоторых других экстремальных видах спорта.
Динамическая страховка
Динамическая страховка
используется для уменьшения рывка на веревку
и, следовательно, на другие участки страховочной
цепи. Самым слабым местом является верхняя
точка страховки. Ранее используемые пеньковые
веревки обрывались уже при факторе рывка
К=0.25. При этом величина рывка была около
700 кг. Современные импортные веревки подразделяются
на динамические и статические (их еще называют
полудинамическими). Есть стандарты на один
и другой тип веревок. Из российских веревок
только калининградская динамическая
веревка удовлетворяет тестам UIAA, остальные
веревки следует считать статическими.
Для статических веревок есть рекомендация
не использовать их в условиях, когда фактор
рывка выше 1. Допустимые усилия рывка
для статических веревок возникают при
факторе рывка К=0.3 (порядка 500 кг). Это соответствует
следующей схеме расположения точек страховки:
3, 6, 9, 11, 13, 15, 18, 21, 25, 30, 35, 40, 47 метров от базы.
При такой схеме можно использовать статическую страховку (при этом на верхнюю точку будет приходиться нагрузка около 850 кг, а на базу — рывок 350 кг). Если точки расположены реже, нужно использовать динамическую страховку.
Как осуществляется динамическая страховка? Один из принципов динамической страховки, сформулированный еще в 30—40 годах, гласит — «the rope mast run» (веревка должна бежать).
Динамическая страховка подразделяется на мягкую и жесткую. При этом веревка протравливается с определенным усилием через тормозное устройство. Мягкая динамическая страховка — при усилии протравливания 200 кг, жесткая — 400 кг и выше. В первом случае рывок на сорвавшегося будет равен 300 кг, во втором — 600 кг. Соответственно нагрузки на верхний крюк 500 кг в первом случае и 1000 кг — во втором. Протравливать веревку легче всего через тормозные устройства.
Зависимость усилия протравливания для разных тормозных устройств
устройство |
усилие захвата руками 25 кг |
усилие захвата руками 50 кг |
восьмерка |
200 кг |
300 кг |
шайба Штихта с одним карабином |
200 кг |
250 кг |
шайба Штихта с двумякарабинами |
300 кг |
400 кг |
Grigri (Petzl) |
700 кг |
- |
Сколько необходимо протравливать? Соотношение такое. Во сколько раз усилие протравливания больше веса человека, во столько же раз длина протравливания меньше глубины падения. Если человек весом 100 кг (вместе с одеждой и снаряжением) упал на глубину 10 м (5 м до последней точке, и столько же ниже), усилие протравливания 400 кг (усилие протравливания больше веса с в 4 раза), значит протравливать надо в 4 раза меньше — 2.5 м. Соответственно если усилие протравливания 200 кг, то протравливать нужно 5 м. Усилия, возникающие в различных участках страховочной цепи мы рассмотрим ниже.
Надо заметить, что с появлением современных веревок динамическая страховка стала использоваться реже. На скалолазных стендах и анкерных маршрутах ее уже не используют. Но в альпинизме ее надо уметь применять, а в отдельных случаях ее применение обязательно (например — на снежном склоне).
При динамической страховке
нужно оставлять свободную
Страховка в горах
Срыв — описание процесса и возникающие при этом нагрузки
При срыве первого в связке он падает до точки страховки и далее на всю длину свободной веревки. При этом его потенциальная энергия переходит в кинетическую. Чем дальше он падает, тем более высокую скорость набирает. Когда свободная веревка кончается, веревка начинает растягиваться и поглощать кинетическую энергию человека. Сорвавшийся останавливается в тот момент, когда веревка поглотит всю его кинетическую энергию. В этот момент усилие в веревке достигаем максимума. Именно это усилие надо рассматривать для оценки значения рывка и воздействия его на верхнюю точку страховки и страхующего.
Кинетическая энергия гасится, также, трением в верхнем карабине и трением в тормозном устройстве.
В приложении, приведенном в конце работы, мы сделаем вывод формул, описывающей поведение альпинистской веревки при срыве первого в связке. А сейчас рассмотрим — какие силы возникают в различных элементах страховочной цепи при срыве ведущего.
На рисунке изображена верхняя точка страховки, на которой произошло задержание сорвавшегося. Кинетическая энергия сорвавшегося альпиниста поглощается упругим растяжением веревки. При этом на сорвавшегося действует сила упругости F, эта же сила воздействует на карабин верхней точки страховки в направлении срыва.
В карабине на веревку действует сила трения Fтрен, которая препятствует движению веревки. Сила трения зависит от коэффициента трения и силы давления веревки на карабин. В том же направлении, что и сила трения, действует сила F1, которая удерживает сорвавшегося от дальнейшего падения. Удержание падающего человека возможно лишь при условии, когда F=F1+Fтрен. При этом веревка может двигаться в карабине с некоторой постоянной скоростью (вариант протравливания), либо останавливаться до момента полной остановки. Когда веревка останавливается, движение ее описывается гармоническими затухающими колебаниями (их уравнение без учета эффекта затухания приводится в приложении).
Сила трения, по оценкам фирм-производителей снаряжения, составляет около 34% от силы рывка F (т.е. это для условий новой веревки, нового карабина и при отсутствии грязи, воды и прочих факторов, увеличивающих силу трения). При этом сила F1 составляет 66% от силы F. Тогда на карабин будет воздействовать сила N=F1+F=1.66F. При наличии грязи, влаги, дефектов веревки или карабина сила трения может увеличиться, так что, реальная нагрузка на карабин (а поэтому и на точку страховки) составляет: F < N < 1.66F.
Итак, при срыве действуют следующие силы: