Государственная система обеспечения единства измерений. Её структура, участники, документы

Автор работы: Пользователь скрыл имя, 14 Ноября 2013 в 01:07, реферат

Краткое описание

Стремительный рост численности человечества и его научно-технической вооруженности в корне изменили ситуацию на Земле. Если в недавнем прошлом вся человеческая деятельность проявлялась отрицательно лишь на ограниченных, хоть и многочисленных территориях, а сила воздействия была несравненно меньше мощного круговорота веществ в природе, то теперь масштабы естественных и антропогенных процессов стали сопоставимыми, а соотношение между ними продолжает изменяться с ускорением в сторону возрастания мощности антропогенного влияния на биосферу.

Содержание

• Введение 2
• Загрязнение атмосферы 2
• Источники загрязнения атмосферы 3
• Химическое загрязнение атмосферы 7
• Аэрозольное загрязнение атмосферы 9
• Загрязнение атмосферы выбросами транспорта 10
• Мероприятия по борьбе с выбросами автотранспорта 11
• Средства защиты атмосферы 13
• Способы очистки газовых выбросов в атмосферу 15
• Охрана атмосферного воздуха 16
• Заключение 18
• Список использованной литературы 19

Вложенные файлы: 1 файл

Загрязнение атмосферы).docx

— 42.91 Кб (Скачать файл)

Основные загрязнители воздуха  жилых помещений – пыль и табачный дым, угарный и углекислый газы, двуокись азота, радон и тяжелые металлы, инсектициды, дезодоранты, синтетические  моющие вещества, аэрозоли лекарств, микробы  и бактерии. Японские исследователи  показали, что бронхиальная астма  может быть связана с наличием в воздухе жилищ домашних клещей.

Для атмосферы характерна чрезвычайно высокая динамичность, обусловленная как быстрым перемещением воздушных масс в латеральном  и вертикальном направлениях, так  и высокими скоростями, разнообразием  протекающих в ней физико-химических реакций. Атмосфера рассматривается  сейчас как огромный «химический  котел», который находится под  воздействием многочисленных и изменчивых антропогенных и природных факторов. Газы и аэрозоли, выбрасываемые в  атмосферу, характеризуются высокой  реакционной способностью. Пыль и сажа, возникающие при сгорании топлива, лесных пожарах, сорбируют тяжелые металлы и радионуклиды и при осаждении на поверхность могут загрязнить обширные территории, проникнуть в организм человека через органы дыхания.

Выявлена тенденция совместного  накопления в твердых взвешенных частицах приземной атмосферы Европейской  России свинца и олова; хрома, кобальта и никеля; стронция, фосфора, скандия, редких земель и кальция; бериллия, олова, ниобия, вольфрама и молибдена; лития, бериллия и галлия; бария, цинка, марганца и меди. Высокие концентрации в снеговой пыли тяжелых металлов обусловлены как присутствием их минеральных фаз, образовавшихся при  сжигании угля, мазута и других видов  топлива, так и сорбцией сажей, глинистыми частицами газообразных соединений типа галогенидов олова.

Время «жизни» газов и  аэрозолей в атмосфере колеблется в очень широком диапазоне (от 1 – 3 минут до нескольких месяцев) и  зависит в основном от их химической устойчивости размера (для аэрозолей) и присутствия реакционно-способных  компонентов (озон, пероксид водорода и др.).

Оценка и тем более  прогноз состояния приземной  атмосферы являются очень сложной  проблемой. В настоящее время  ее состояние оценивается главным  образом по нормативному подходу. Величины ПДК токсических химических веществ  и другие нормативные показатели качества воздуха приведены во многих справочниках и руководствах. В таком  руководстве для Европы кроме  токсичности загрязняющих веществ (канцерогенное, мутагенное, аллергенное  и другие воздействия) учитываются  их распространенность и способность  к аккумуляции в организме  человека и пищевой цепи. Недостатки нормативного подхода – ненадежность принятых значений ПДК и других показателей  из-за слабой разработанности их эмпирической наблюдательной базы, отсутствие учета  совместного воздействия загрязнителей  и резких изменений состояния  приземного слоя атмосферы во времени  и пространстве. Стационарных постов наблюдения за воздушным бассейном  мало, и они не позволяют адекватно  оценить его состояние в крупных  промышленно – урбанизированных центрах. В качестве индикаторов  химического состава приземной  атмосферы можно использовать хвою, лишайники, мхи. На начальном этапе  выявления очагов радиоактивного загрязнения, связанных с чернобыльской аварией, изучалась хвоя сосны, обладающая способностью накапливать радионуклиды, находящиеся  в воздухе. Широко известно покраснение  игл хвойных деревьев в периоды  смогов в городах.

Наиболее чутким и надежным индикатором состояния приземной  атмосферы является снеговой покров, депонирующий загрязняющие вещества за сравнительно длительный период времени  и позволяющий установить местоположение источников пылегазовыбросов по комплексу  показателей. В снеговых выпадениях фиксируются загрязнители, которые  не улавливаются прямыми измерениями  или расчетными данными по пылегазовыбросам.

К перспективным направлениям оценки состояния приземной атмосферы  крупных промышленно – урбанизированных территорий относится многоканальное дистанционное зондирование. Преимущество этого метода заключается в способности быстро, неоднократно и в «одном ключе» охарактеризовать большие площади. К настоящему времени разработаны способы оценки содержания в атмосфере аэрозолей. Развитие научно-технического прогресса позволяет надеяться на выработку таких способов и в отношении других загрязняющих веществ.

Прогноз состояния приземной  атмосферы осуществляется по комплексным  данным. К ним прежде всего относятся  результаты мониторинговых наблюдений, закономерности миграции и трансформации  загрязняющих веществ в атмосфере, особенности антропогенных и  природных процессов загрязнения  воздушного бассейна изучаемой территории, влияние метеопараметров, рельефа  и других факторов на распределение  загрязнителей в окружающей среде. Для этого в отношении конкретного  региона разрабатываются эвристичные  модели изменения приземной атмосферы  во времени и пространстве. Наибольшие успехи в решении этой сложной  проблемы достигнуты для районов  расположения АЭС. Конечный результат  применения таких моделей – количественная оценка риска загрязнения воздуха  и оценка его приемлемости с социально-экономической  точки зрения.

 

Химическое загрязнение  атмосферы

 

Под загрязнением атмосферы  следует понимать изменение ее состава  при поступлении примесей естественного  или антропогенного происхождения. Вещества-загрязнители бывают трех видов: газы, пыль и аэрозоли. К последним  относятся диспергированные твердые  частицы, выбрасываемые в атмосферу  и находящиеся в ней длительное время во взвешенном состоянии.

К основным загрязнителям  атмосферы относятся углекислый газ, оксид углерода, диоксиды серы и азота, а также малые газовые  составляющие, способные оказывать  влияние на температурный режим  тропосферы: диоксид азота, галогенуглероды (фреоны), метан и тропосферный озон.

Основной вклад в высокий  уровень загрязнения воздуха  вносят предприятия черной и цветной  металлургии, химии и нефтехимии, стройиндустрии, энергетики, целлюлозно-бумажной промышленности, а в некоторых  городах и котельные.

Источники загрязнений - теплоэлектростанции, которые вместе с дымом выбрасывают  в воздух сернистый и углекислый газ, металлургические предприятия, особенно цветной металлургии, которые выбрасывают  в воздух окислы азота, сероводород, хлор, фтор, аммиак, соединения фосфора, частицы и соединения ртути и  мышьяка; химические и цементные  заводы. Вредные газы попадают в  воздух в результате сжигания топлива  для нужд промышленности, отопления  жилищ, работы транспорта, сжигания и  переработки бытовых и промышленных отходов.

Атмосферные загрязнители разделяют  на первичные, поступающие непосредственно  в атмосферу, и вторичные, являющиеся результатом превращения последних. Так, поступающий в атмосферу  сернистый газ окисляется до серного  ангидрида, который взаимодействует  с парами воды и образует капельки серной кислоты. При взаимодействии серного ангидрида с аммиаком образуются кристаллы сульфата аммония. Подобным образом, в результате химических, фотохимических, физико-химических реакций  между загрязняющими веществами и компонентами атмосферы, образуются другие вторичные признаки. Основным источником пирогенного загрязнения  на планете являются тепловые электростанции, металлургические и химические предприятия, котельные установки, потребляющие более 170% ежегодно добываемого твердого и жидкого топлива.

Основными вредными примесями  пирогенного происхождения являются следующие:

а) Оксид углерода. Получается при неполном сгорании углеродистых веществ. В воздух он попадает в результате сжигания твердых отходов, с выхлопными газами и выбросами промышленных предприятий. Ежегодно этого газа поступает  в атмосферу не менее 250 млн. т. Оксид  углерода является соединением, активно  реагирующим с составными частями  атмосферы и способствует повышению  температуры на планете, и созданию парникового эффекта.

б) Сернистый ангидрид. Выделяется в процессе сгорания серо-содержащего  топлива или переработки сернистых  руд (до 70 млн. т. в год). Часть соединений серы выделяется при горении органических остатков в горнорудных отвалах. Только в США общее количество выброшенного в атмосферу сернистого ангидрида составило 85 процентов  от общемирового выброса.

в) Серный ангидрид. Образуется при окислении сернистого ангидрида. Конечным продуктом реакции является аэрозоль или раствор серной кислоты  в дождевой воде, который подкисляет почву, обостряет заболевания дыхательных  путей человека. Выпадение аэрозоля серной кислоты из дымовых факелов  химических предприятий отмечается при низкой облачности и высокой  влажности воздуха. Пирометаллургические предприятия цветной и черной металлургии, а также ТЭС ежегодно выбрасывают в атмосферу десятки  миллионов тонн серного ан гидрида.

г) Сероводород и сероуглерод. Поступают в атмосферу раздельно  или вместе с другими соединениями серы. Основными источниками выброса  являются предприятия по изготовлению искусственного волокна, сахара, коксохимические, нефтеперерабатывающие, а также  нефтепромыслы. В атмосфере при  взаимодействии с другими загрязнителями подвергаются медленному окислению  до серного ангидрида.

д) Оксиды азота. Основными  источниками выброса являются предприятия, производящие; азотные удобрения, азотную  кислоту и нитраты, анилиновые красители, нитросоединения, вискозный шелк, целлулоид. Количество оксидов азота, поступающих  в атмосферу, составляет 20 млн. т. в  год.

е) Соединения фтора. Источниками  загрязнения являются предприятия  по производству алюминия, эмалей, стекла, керамики. стали, фосфорных удобрений. Фторосодержащие вещества поступают  в атмосферу в виде газообразных соединений - фтороводорода или пыли фторида натрия и кальция. Соединения характеризуются токсическим эффектом. Производные фтора являются сильными инсектицидами.

ж) Соединения хлора. Поступают  в атмосферу от химических предприятий, производящих соляную кислоту, хлоросодержащие  пестициды, органические красители, гидролизный  спирт, хлорную известь, соду. В атмосфере  встречаются как примесь молекулы хлора и паров соляной кислоты. Токсичность хлора определяется видом соединений и их концентрацией.

В металлургической промышленности при выплавке чугуна и при переработке  его на сталь происходит выброс в  атмосферу различных тяжелых  металлов и ядовитых газов. Так, в  расчете на I т. предельного чугуна выделяется кроме 2,7 кг сернистого газа и 4,5 кг пылевых частиц, определяющих количество соединений мышьяка, фосфора, сурьмы, свинца, паров ртути и  редких металлов, смоляных веществ  и цианистого водорода.

Объем выбросов загрязняющих веществ в атмосферу от стационарных источников на территории России составляет около 22 – 25 млн. т. в год.

 

Аэрозольное загрязнение  атмосферы

 

Из естественных и антропогенных  источников в атмосферу ежегодно поступают сотни миллионов тонн аэрозолей. Аэрозоли - это твердые  или жидкие частицы, находящиеся  во взвешенном состоянии в воздухе. Аэрозоли разделяются на первичные (выбрасываются из источников загрязнения), вторичные (образуются в атмосфере), летучие (переносятся на далекие  расстояния) и нелетучие (отлагаются на поверхности вблизи зон пылегазовыбросов). Устойчивые и тонкодисперсные летучие  аэрозоли - (кадмий, ртуть, сурьма, йод-131 и др.) имеют тенденцию накапливаться  в низинах, заливах и других понижениях рельефа, в меньшей степени на водоразделах.

К естественным источникам относят пыльные бури, вулканические  извержения и лесные пожары. Газообразные выбросы (например, SO2) приводят к образованию  в атмосфере аэрозолей. Несмотря на то, что время пребывания в  тропосфере аэрозолей исчисляется  несколькими сутками, они могут  вызвать снижение средней температуры  воздуха у земной поверхности  на 0,1 – 0,3С0. Не меньшую опасность  для атмосферы и биосферы представляют аэрозоли антропогенного происхождения, образующиеся при сжигании топлива  либо содержащиеся в промышленных выбросах.

Средний размер аэрозольных  частиц составляет 1-5 мкм. В атмосферу  Земли ежегодно поступает около 1 куб. км пылевидных частиц искусственного происхождения. Большое количество пылевых частиц образуется также  в ходе производственной деятельности людей.

Основными источниками искусственных  аэрозольных загрязнений воздуха  являются ТЭС, которые потребляют уголь  высокой зольности, обогатительные фабрики, металлургические. цементные, магнезитовые и сажевые заводы. Аэрозольные  частицы от этих источников отличаются большим разнообразием химического состава. Чаще всего в их составе обнаруживаются соединения кремния, кальция и углерода, реже - оксиды металлов: железа, магния, марганца, цинка, меди, никеля, свинца, сурьмы, висмута, селена, мышьяка, бериллия, кадмия, хрома, кобальта, молибдена, а также асбест. Они содержатся в выбросах предприятий теплоэнергетики, черной и цветной металлургии, стройматериалов, а также автомобильного транспорта. Пыль, осаждающаяся в индустриальных районах, содержит до 20% оксида железа, 15% силикатов и 5% сажи, а также примеси различных металлов (свинец, ванадий, молибден, мышьяк, сурьма и т.д.).

Аэрозоли загрязняют не только атмосферу, но и стратосферу, оказывая влияние на ее спектральные характеристики и вызывая опасность повреждения  озонового слоя. Непосредственно  в стратосферу аэрозоли поступают  с выбросами сверхзвуковых самолетов, однако имеются аэрозоли и газы, диффундирующие в стратосфере.

Основной аэрозоль атмосферы  – сернистый ангидрид (SO2), несмотря на большие масштабы его выбросов в атмосферу, является короткоживущим газом (4 – 5 суток). По современным оценкам, на больших высотах выхлопные  газы авиационных двигателей могут  увеличить естественный фон SO2  на 20%. Хотя эта цифра невелика, повышение  интенсивности полетов уже в  ХХ веке может сказаться на альбедо  земной поверхности в сторону  его увеличения. Ежегодное поступление  сернистого газа в атмосферу только вследствие промышленных выбросов оценивается  почти в 150 млн. т. В отличие от углекислого газа сернистый ангидрид является весьма нестойким химическим соединением. Под воздействием коротковолновой  солнечной радиации он быстро превращается в серный ангидрид и в контакте с водяным паром переводится  в сернистую кислоту. В загрязненной атмосфере, содержащей диоксид азота, сернистый ангидрид быстро переводится  в серную кислоту, которая, соединяясь с капельками воды, образует так  называемые кислотные дожди.

Информация о работе Государственная система обеспечения единства измерений. Её структура, участники, документы