Автор работы: Пользователь скрыл имя, 29 Января 2013 в 20:47, контрольная работа
Микропроцессоры и микроЭВМ стали новым массовым классом ЭВМ вследствие малой материалоемкости и стоимости , низкого энергопотребления и высокой надежности . Отечественной промышленностью ежегодно производится несколько десятков тысяч микроЭВМ), сотни тысяч микропроцессоров и микрокалькуляторов на их основе. Разрабатываются операционные системы общего применения и стандартное программное обеспечение микроЭВМ.
Введение
Развитие микропроцессоров
Достоинства микропроцессоров
Структурная схема, принцип работы микропроцессора
Архитектуры, типы, характеристики и параметры микропроц.
Современные технологии полупроводникового производства
Список литературы, источники
Технологический процесс производства (Process Technology) – техпроцесс определяет размеры элементов и соединений между ними в интегральной схеме. Измеряется в микрометрах (0,35 μm; 0,25 μm;…). Чем меньше число, тем меньше сам кристалл, следовательно, меньше потребляемая мощность и тепловыделение. А ведь тепловыделение сильно препятствует увеличению частоты, на которой работает микропроцессор. Где-то в 1997 году произошел переход с 0,25 μm на 0,18 μm технологию производства. А уже в 2001 году произошел переход на 0,13 μm технологию, что позволило намного увеличить частоту. Вот-вот произойдет переход на 0,09 μm.
Производительность
микропроцессора определяется
1. Тактовая частота (Частота ядра) (Internal clock) – это количество электрических импульсов в секунду. Каждый импульс несет в себе некую информацию - это могут быть команды процессору или данные памяти. Тактовая частота задается кварцевым генератором - одним из блоков, расположенных на материнской плате. Тактовая частота кварцевого генератора выдерживается с очень высокой точностью и лежит в мега или гигагерцовом диапазоне. Один герц - один импульс, один мегагерц - один миллион импульсов, один гигагерц - тысяча мегагерц. Микропроцессор, работающий на тактовой частоте 800 МГц, выполняет 800 миллионов рабочих тактов в секунду. В зависимости от сложности обрабатываемой команды процессору для выполнения задачи необходимы сотни и тысячи тактов. Но для выполнения простых операций бывает достаточно одного такта. Чем выше тактовая частота ядра, тем выше скорость обработки данных. Современные микропроцессоры работают на частотах от 300 МГц до 4,7 ГГц.
2. Частота системной шины (System clock или Front Side Bus) – системная шина служит для связи микропроцессора с остальными устройствами. Микропроцессор имеет две частоты: тактовая частота ядра и частота системной шины. Чем выше частота системной шины, тем выше скорость передачи данных между микропроцессором и остальными устройствами. Частота системной шины современных микропроцессоров от 66 МГц до 266МГц.
3. Объем Кэш-памяти (Cache) – Кэш-память быстрая память малой емкости, используемая процессором для ускорения операций, требующих обращения к памяти. Кеш – промежуточное звено между микропроцессором и опретивной памятью. Различают несколько уровней кэша: кэш первого уровня (L1) - кэш команд (инструкций) которые предстоит исполнить, кэш первого уровня размещается на одном кристалле с процессором. Кэш второго уровня (L2) - кэш данных - используется для ускорения операций с данными (в первую очередь чтения). На общую производительность влияет размер кэша L2. Чем больше L2, тем дороже процессор, т.к. память для кэша еще очень дорога. Поэтому эффективнее увеличивать частоту кэша, а для этого он должен находиться как можно ближе к ядру процессора. Кэш-память может работать на частоте 1/4, 1/3, 1/2, 1/1 от частоты ядра. Современные микропроцессоры имеют кэш объемом от 8 Кб до 5Мб.
Предельно эксплуатационные параметры микропроцессоров:
1. Напряжение питания микропроцессора – величина питающего напряжения микропроцессоров зависит от технологического процесса и от частоты ядра. Чем меньше кристалл и ниже частота, тем меньше напряжение питания. Напряжение питания современных микропроцессоров от 0,5 В до 3,5 В, чаще всего от 1,2 В до 1,75 В.
2. Ток ядра – у современных микропроцессоров ток, протекающий через ядро от 1 А до 90 А.
3. Потребляемая мощность – зависит от величины питающего напряжения и от частоты ядра. Чем меньше напряжение питания и частота, тем меньше потребляемая мощность. Мощность современных микропроцессоров от 1Вт до 120 Вт. Чаще всего в пределах 40-70 Вт.
4. Максимальная температура нагрева кристалла – максимальная температура кристалла, при которой возможна стабильная работа микропроцессора. У современных микропроцессоров она колеблется в пределах от 60˚С до 95˚С.
Физические параметры микропроцессорв (Форм-фактор):
1. Тип, размеры корпуса
2. Размеры кристалла
3. Количество выводов
4. Форма расположения выводов
Современные технологии полупроводникового производства.
В
последние годы к стадии
Первая интегральная
схема, где соединения между транзисторами
сделаны прямо на подложке, была
сделана более 40 лет назад. За это
время технология их производства претерпела
ряд больших и малых улучшений,
пройдя от первой схемы Джека Килби
до сегодняшних центральных
Здесь пойдет речь
о некоторых последних
Дальше на пластину наносится еще один защитный слой, на этот раз - светочувствительный, и происходит одна из ключевых операций - удаление в определенных местах ненужных участков его и пленки окислов с поверхности пластины, до обнажения чистого кремния, с помощью фотолитографии.
На первом этапе
пластину с нанесённой на её поверхность
плёнкой светочувствительного слоя
помещают в установку экспонирования,
которая по сути работает как фотоувеличитель.
В качестве негатива здесь используется
прецизионная маска - квадратная пластина
кварцевого стекла покрытая плёнкой
хрома там, где требуется. Хромированные
и открытые участки образуют изображение
одного слоя одного чипа в масштабе
1:5. По специальным знакам, заранее
сформированным на поверхности пластины,
установка автоматически
В результате засвечивания
химический состав тех участков светочувствительного
слоя, которые попали под прозрачные
области фотомаски, меняется. Что
дает возможность удалить их с
помощью соответствующих
После чего аналогичной процедуре (уже с использованием других веществ, разумеется) подвергается и слой окислов на поверхности пластины. И снова, опять же, уже новыми химикатами, снимается светочувствительный слой:
Потом накладывается
следующая маска, уже с другим
шаблоном, потом еще одна, еще, и
еще... Именно этот этап производства чипа
является критическим в плане
ошибок: любая пылинка или
Поверхность пластины тщательно очищается, чтобы вместе с примесями в кремний не попали лишние вещества, после чего она попадает в камеру для высокотемпературной обработки и на нее, в том или ином агрегатном состоянии, с использованием ионизации или без, наносится небольшое количество требуемых примесей. После чего, при температуре порядка от 700 до 1400 градусов, происходит процесс диффузии, проникновения требуемых элементов в кремний на его открытых в процессе литографии участках. В результате на поверхности пластины получаются участки с нужными свойствами. И в конце этого этапа на их поверхность наносится все та же защитная пленка из окисла кремния, толщиной порядка одного микрона.
Все. Осталось только проложить по поверхности чипа металлические соединения (сегодня для этой роли обычно используется алюминий, а соединения сегодня обычно расположены в 6 слоев), и дело сделано. В общих чертах, так в результате и получается, к примеру, классический МОП транзистор: при наличии напряжения на затворе начинается перемещение электронов между измененными областями кремния.
Теперь, слегка пробежавшись по классическому процессу создания сегодняшних чипов, можно более уверенно перейти к обзору технологий, которые предполагают внести определенные коррективы в эту картину.
Медные соединения
Первая из них, уже
начавшая широко внедряться в коммерческое
производство - это замена на последнем
этапе алюминия на медь. Медь является
лучшим проводником, чем алюминий (удельное
сопротивление 0,0175 против 0,028 ом*мм2/м),
что, в полном соответствии с законами
физики, позволяет уменьшить сечение
межкомпонентных соединений. Вполне
своевременно, учитывая постоянное движение
индустрии в сторону уменьшения
размеров транзисторов и увеличения
плотности их размещения на чипе, когда
использование алюминия начинает становиться
невозможным. Индустрия начала сталкиваться
с этой проблемой уже в первой
половине 90-х. Вдобавок, что толку
в ускорении самих
Проблемой при переходе на медь являлось то, что алюминий куда лучше образует контакт с кремнием. Однако после не одного десятка лет исследований, ученым удалось найти принцип создания сверхтонкой разделительной области между кремниевой подложкой и медными проводниками, предотвращающей диффузию этих двух материалов.
По данным IBM, применение в технологическом процессе меди вместо алюминия, позволяет добиться снижения себестоимости примерно на 20-30 процентов за счет снижения площади чипа. Их технология CMOS 7S, использующая медные соединения, позволяет создавать чипы, содержащие до 150-200 миллионов транзисторов. И, наконец, просто увеличение производительности чипа (до 40 процентов) за счет меньшего сопротивления проводников.
IBM начала предлагать
клиентам эту технологию в
начале 98 года, в конце этого года
своим заказчикам предложили
использовать медь при
SiGe
Соединения - соединениями,
но уже на скорости чипа
в несколько ГГц перестает
справляться с нагрузкой сама
кремниевая подложка. И если для
традиционных областей
Результатом применения становится увеличение скорости чипов в 2-4 раза по сравнению с той, что может быть достигнута путем использования кремния, во столько же снижается и их энергопотребление. При этом, в ход вступает все тот же решающий фактор - стоимость: SiGe чипы можно производить на тех же линиях, которые используются при производстве чипов на базе обычных кремниевых пластин, таким образом отпадает необходимость в дорогом переоснащении производственного оборудования. По информации IBM, потенциальная скорость транзистора (не чипа!) с их технологией составляет сегодня 45-50 ГГц (что далеко не рекорд), ведутся работы над увеличением этой цифры до 120 ГГц. Впрочем, в ближайшие годы прихода SiGe в компьютер ждать не стоит - при тех скоростях, что потребуется PC чипам в ближайшем будущем вполне хватает кремния, легированного такими технологиями, как медные соединения или SOI.
Кремний на
изоляторе (silicon-on-
Еще одна технология,
позволяющая достаточно
Вот и получается
- кремний на изоляторе. Зачем это
понадобилось? Чтобы уменьшить емкость.
В идеале МОП транзистор должен выключаться,
как только будет исчезнет питание
с затвора (или наоборот, появится,
в случае с КМОП). Но наш мир
далеко не идеален, это справедливо
и в данном конкретном случае. На
время срабатывания транзистора
напрямую влияет емкость области
между между измененными
Основная сложность в данном случае, как и в случае с медными соединениями, заключается в разных физических свойствах вещества. Кремний, используемый в подложке - кристалл, пленка окислов - нет, и закрепить на ее поверхности, или же не поверхности другого изолятора еще один слой кристаллического кремния весьма трудно. Вот как раз проблема создания идеального слоя и заняла весьма много времени. Не так давно IBM уже продемонстрировала процессоры PowerPC и чипы SRAM, созданные с использованием этой технологии, просигнализировав этим о том, что SOI подошла к стадии возможности коммерческого применения. Совсем недавно, IBM объявила о том, что она достигла возможности сочетать SOI и медные соединения на одном чипе, пользуясь плюсами обеих технологий. Тем не менее, пока что никто кроме нее не заявил публично о намерении использовать эту технологию при производстве чипов, хотя о чем-то подобном речь идет.