Альтернативные виды энергии

Автор работы: Пользователь скрыл имя, 06 Марта 2013 в 21:43, доклад

Краткое описание

Данная работа является кратким, но обширным обзором современного состояния энергоресурсов человечества. В работе рассмотрено развитие энергетики, как отрасли народного хозяйства, эволюция источников энергии, а также проблемы освоения и использования новых ресурсов энергии (альтернативные источники энергии).

Содержание

Введение 3
Мир ищет энергию 6
Альтернативные источники энергии 15
Проект постоянное электричество без загрязнения окружающей среды 25
Заключение 32
Литература 34

Вложенные файлы: 1 файл

физака.doc

— 164.50 Кб (Скачать файл)

Хотя к проектированию подобных электростанций конструкторы приступили еще в конце 1960-х годов. Любой  вариант проекта солнечной  космической электростанции предполагает, что это колоссальное сооружение. Даже самая маленькая космическая электростанция должна весить десятки тысяч тонн. И эту гигантскую массу необходимо будет запустить на удаленную от Земли орбиту.

Покажи, солнечные батареи  используются эффективно на космических станциях и спутниках.

На сегодняшний день ведутся работы, пока не в пользу солнечных электростанций: сегодня  эти сооружения все еще относятся  к наиболее сложным и самым  дорогостоящим техническим методом  использования гелио энергии.

Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение потребности в материалах, а следовательно, и в трудовых ресурсах для добычи сырья, его обогащения, получения материалов, изготовление гелиостатов, коллекторов, другой аппаратуры, их перевозки.

Необходимы новые варианты и технологий позволяющие из той  солнечной энергии, которая попадает на земную  поверхность получать максимальное КПД также необходимо добиться дешевизны материалов и  облегчения производства гелиостатов. Пока не найдено не каких отрицательных качеств этих станций. Работы в этой области энергетике ведутся по всему миру.

 

Ветровая энергия

 

Как известно, мы живем  на дне воздушного океана, в мире ветров. Люди давно это поняли, они  постоянно ощущали на себе воздействие  ветра, хотя долгое время не могли объяснить многие явления.

Огромна энергия  движущихся воздушных масс. Запасы энергии ветра  более чем в сто раз превышают  запасы  гидроэнергии  всех рек  планеты. Постоянно и повсюду  на земле дуют ветры. Климатические  условия позволяют  развивать ветроэнергетику на огромной территории.

На первый взгляд ветер  кажется одним из самых доступных  и возобновляемых источников энергии. В отличие от Солнца он может “работать” зимой и летом, днем и ночью, на севере и на юге. Но ветер - это очень  рассеянный энергоресурс.

Ветровая энергия практически  всегда “размазана” по огромным территориям. Основные параметры ветра - скорость и направление - меняются подчас очень  быстро и непредсказуемо, что делает его менее “надежным”, чем Солнце. Таким образом, встают две проблемы, которые необходимо решить для полноценного использования энергии ветра. Во-первых, это возможность “ловить” кинетическую энергию ветра с максимальной площади. Во-вторых, еще важнее добиться равномерности, постоянства ветрового потока. Вторая проблема пока решается с трудом.

К решению первой проблемы привлекли специалистов самолета строения умеющих выбрать наиболее целесообразный профиль лопасти, для получения  максимальной энергии ветра. Усилиями ученых и инженеров созданы самые  разнообразные конструкции современных ветровых установок.

Это многолопастные «ромашки»  и винты вроде самолетных пропеллеров  с тремя, двумя и даже одной  лопастью. Вертикальные конструкции  хороши тем, что улавливают ветер  любого направления; остальным приходится разворачиваться по ветру. Такой вертикальный ротор напоминает разрезанную вдоль и насаженную на ось бочку. Встречаются и оригинальные решения. Например, тележка с парусом ездит по кольцу из рельс, а ее колеса приводят в действие электрогенератор.

Наиболее распространенным типом ветровых энергоустановок (ВЭУ) является турбина с горизонтальным валом и числом лопастей от 1 до 3.

По оценкам различных  авторов, ветроэнергетический потенциал  Земли равен 1200 ТВт, однако использования этого вида энергии в различных районах Земли неодинаковы. Среднегодовая скорость ветра на высоте 20–30 м над поверхностью Земли должна быть достаточно большой, чтобы мощность воздушного потока, проходящего через надлежащим образом ориентированное вертикальное сечение, достигала значения, приемлемого для преобразования.

Ветровые электростанции выгодны, как правило, в регионах, где среднегодовая скорость ветра  составляет 6 метров в секунду и  выше и которые бедны другими  источниками энергии, а также  в зонах, куда доставка топлива очень  дорога.

Ветроэнергетическая установка, расположенная на площадке, где среднегодовая удельная мощность воздушного потока составляет около 500 Вт/м2 (скорость воздушного потока при этом равна 7 м/с), может преобразовать в электроэнергию около 175 из этих 500 Вт/м2.  следует  также учитывать те изменения, которые вносятся  ветровыми  установками в ландшафт местности, их размещение должно соответствовать  не только стандартам безопасности и эффективности, но и правильного размещения на местности (мельницы ВЭУ, расположенные хаотично менее эффективны, чем те, которые расположены в определенной геометрической последовательности).

Малые ВЭУ обычно предназначаются  для автономной работы. Системы, которым  они выдают энергию, привередливы, требуют  подачи энергии более высокого качества и не допускают перерывов в питании, например, в периоды безветрия. Поэтому им необходим дублер, то есть резервные источники энергии, например, дизельные двигатели той же, как у ветроустановок, или меньшей мощности.

Что касается более мощных ветроустановок (свыше 100кВт), то они применяются как электростанции и включаются обычно в энергосистемы. Обычно на одной площадке устанавливаются достаточно большое количество ВЭУ, образующих так называемую ветровую ферму. На одном краю (фермы) может дуть ветер, на другом в это время тихо. Ветряки нельзя ставить слишком тесно, чтобы они не загораживали друг друга. Поэтому (ферма) занимает много место. Такие (фермы) есть в США, во Франции, в Англии, а в Дании «ветряную ферму» разместили на прибрежном мелководье Северного моря: там она никому не мешает и ветер устойчивее, чем на суше.

Ветроэнергетика сильно зависит от капризов природы. Скорость ветра бывает настолько низкой, что ветра агрегат  совсем не может работать, или настолько  высокой, что ветра агрегат необходимо остановить и принять меры по его защите от разрушения. Если скорость ветра превышает номинальную рабочую скорость, часть извлекаемой механической энергии ветра не используется, с тем чтобы не превышать номинальной электрической мощности генератора. Для  эффективной работы  ВЭУ их  размещают на открытых пространствах, реже на территориях сельскохозяйственных угодий,  что повышает их продуктивность. В горных районах ветра установки работают эффективно из-за природных особенностей данных местностей, там преобладает движение воздушных масс с большой силой  и скоростью, к тому же это дает энергию в труднодоступные районы.   

Правильная установка влияет на КПД ветра агрегатов поэтому  удельная выработка электрической  энергии в течение года составляет 15 – 30% энергии ветра или даже меньше в зависимости от место положения и параметров установки.

Ветряные двигатели не загрязняют окружающую среду, отсутствие влияния  на тепловой баланс атмосферы Земли, отсутствие потребления кислорода, выбросов углекислого газа и других загрязнителей. Чтобы производить с их помощью много электроэнергии, необходимы огромные пространства земли. Лучше всего они работают там, где дуют сильные ветры.

Сегодня ветроэлектрические агрегаты надежно снабжают током нефтяников; они успешно работают в труднодоступных  районах,  на  дальних  островах, в Арктике, на тысячах сельскохозяйственных ферм, где нет поблизости крупных населенных пунктов и электростанций общего пользования.

В проектировании установки  самая трудная проблема состояла в том, чтобы при разной силе ветра обеспечить одинаковое число оборотов пропеллера. Ведь при подключении к сети генератор должен давать не просто rкакую-то электрическую энергию, а только переменный ток с заданным числом циклов в секунду, т. е. со стандартной частотой 50 - 60 Гц. Поэтому угол наклона лопастей по отношению к ветру регулируют за счет попорота их вокруг продольной оси: при сильном ветре этот угол острее, воздушный поток свободнее обтекает лопасти и отдает им меньшую часть своей энергии. Помимо регулирования лопастей весь генератор автоматически поворачивается на мачте против ветра.

Одна из возникших  проблем ветра агрегатов это  избыток энергии в ветреную погоду и не достаток ее период без ветрея. Способов хранения ветреной энергии  очень много рассмотрим наиболее простые один из способов: состоит в том, что ветряное колесо движет насос, который накачивает воду в расположенный выше резервуар, а потом вода, стекая из него, приводит в действие водяную турбину и генератор постоянного или переменного тока. Существуют и другие способы, и проекты: от обычных, хотя и маломощных аккумуляторных батарей до раскручивания гигантских маховиков или нагнетания сжатого воздуха в подземные пещеры и вплоть до производства водорода в качестве топлива. Особенно перспективным представляется последний способ. Электрический ток от ветра агрегата разлагает воду на кислород и водород. Водород можно хранить в сжиженном виде и сжигать в топках тепловых электростанций по мере надобности.

Ветровая энергия это огромная энергия, надо только правильно ее получать и хранить. На сегодняшний день во многих странах мира используют ветра агрегаты при этом суммарная мощность ветра установок в мире быстро возрастает по использованию ВЭУ в мире лидирует США, в Европе Германия, Англия, Дания, Нидерланды.

Германия получает от ветра десятую  часть своей электроэнергии, а  всей Западной Европе ветре дает 2500 МВт электроэнергии. По мере того как  ветряные электростанции окупаются, а  их конструкции совершенствуются, цена «воздушного» электричества падает. Так, в 1993 году во Франции себестоимость 1 кВт-ч электроэнергии, полученной на ветростанции, равнялась 40 сантимам, а к 2006 году она снизилась в 1,7 раз.

Рассмотрим теперь отрицательное  влияние ВЭУ на среду обитания человека и животных, на телевизионную связь и пути сезонной миграции птиц. Действительно  крупные  ВЭУ влияют на телесигнал. На расстоянии  до 0.5 км, они вызывают помехи в телесигнале, это связано с тем, что лопасти ветрового колеса ВЭУ отражают сигналы, вызывая помехи при передачи телевизионного сигнала. Вследствие работы  крупных ВЭУ больше 20 кВт возникает достаточное количества инфразвука, которое  влияет на состояние человека и животных. При работе крупных ВЭУ возникает и естественный шум от работы ветрового колеса. Поэтому размещение ВЭУ больше 10 кВт нежелательно в переделах  черты города. С этими отрицательными  факторами  пытаются бороться, в частности применяя  новые виды материала, которые способны пропускать сигналы  в большом спектре  и  т.д.

Ветровая энергетика вызывает все  больше интерес и стремление к усовершенствованию установок для максимальной эффективности. Во многих страна  начинают их применять в домах, на фермах, на небольшом производстве. 

Проект постоянное электричество без загрязнения  окружающей среды «ПЭБОС»

 

В предыдущих главах мы рассматривали виды энергии и источники энергии. В этой главе мы рассмотрим их применения в быту.  Нами разработан проект ПЭБОС данный проект можно применить в не городских условиях, точнее в частных домах на загородных дачах.

Задача проекта состоит в следующем с помощью гелио установок и ветра установок обеспечить себя постоянным электричеством и стать электра независимым от основных источников электричества.

Рассмотрим основные положения проекта. На территории участка  не обходимо установить одну три ветра установки не большой мощности, так чтобы они находились на расстоянии 15 -20 метров от дома также друг от друга. Мы выбрали ветра установку не большой мощности «конвет-1Э» с асинхронным генератором «2кВт, 230Вт» ветрено колесо с двумя лопастями вращает генератор. Благодаря применению инвертора или выпрямителя можно обеспечить энергией всю бытовую технику, а также заряжать аккумуляторные батареи. КПД такой установки 46 – 48%. Особая конструкция лопастей и специальные приспособления позволяют «конвекту -1Э» эффективно начинать работать при силе ветра 4 метра в секунду. Масса установки примерно 400кг. Также можно применить гелио установки двух типов: машинные и без машинные. Без машинные установки, основанные на фотоэлектрических методов преобразования энергии солнечной батареи можно установить на крыши дома. Если есть рядом домик для подсобного хозяйства, то можно установить солнечные батареи на его крыши, а внутри поставить аккумуляторы для сбора энергии. КПД таких установок 13 – 15%. Масса солнечных батарей будет зависеть от площади крыши.

Рассмотрим машинные установки поскольку энергия  солнечного излучения распределена по большой площади (иными словами, имеет низкую плотность), любая установка для прямого использования солнечной энергии должна иметь собирающее устройство (коллектор) с достаточной поверхностью.

Простейшее устройство такого рода–плоский коллектор; в принципе это черная плита, хорошо изолированная снизу. Она прикрыта стеклом или пластмассой, которая пропускает свет, но не пропускает инфракрасное тепловое излучение. В пространстве между плитой и стеклом чаще всего размещают черные трубки, через которые текут вода, масло, ртуть, воздух, сернистый ангидрид и т. п. Солнечное излучение, проникая через стекло или пластмассу в коллектор, поглощается черными трубками и плитой и нагревает рабочее вещество в трубках. Тепловое излучение не может выйти из коллектора, поэтому температура в нем значительно выше (па 200–500°С), чем температура окружающего воздуха. В этом проявляется так называемый парниковый эффект.

Устанавливаются они  аналогично, некоторые машинные установки  можно собрать самому.

Данное комбинирование позволяет предохраниться отключение электричества, основных источников. В  солнечную и без ветреную погоду накопление энергии  происходит за счет гелио установок. В облачную и ветреную погоду за счет ветра установки.

Самым идеальным случаем  считается солнечный день и ветреная погода. Тогда энергия будет накапливаться  за счет ветра и гелио установок.

На рисунках изображены схемы двух видов получения энергии.

 

Рис. 1

 На рис. 1 изображена схема, в которой солнечные батареи находятся на крыши дома, а ветра установки на территории. Основной накопитель энергии находится в доме.

Рассмотрим еще схему, предназначенную для подсобного хозяйства  рис.2.

 

Рис.2

 

На рис. 2 солнечная батарея находится на крыши подсобного хозяйства, аккумулятор, для накопления энергии внутри который соединен с основным аккумулятором. Внутри дома идет распределение к источнику потребления.

Данный проект является выгодным и независящим от источников энергии, не загрязняющим окружающую среду. Отрицательной стороной этого проекта является дороговизна ветра установок и гелио батарей от площади участка. А также покупка аккумулятора для хранения энергии.

Этот проект находится в стадии разработки и усовершенствован. В этой работе представлено только суть проекта без углубления процесса передачи, хранения и распределения энергии.

Информация о работе Альтернативные виды энергии