Автор работы: Пользователь скрыл имя, 04 Февраля 2014 в 06:03, реферат
А́томное ядро́ — центральная часть атома, в которой сосредоточена основная его масса (более 99,9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом. Размеры ядер различных атомов составляют несколько фемтометров, что в более чем в 10 тысяч раз меньше размеров самого атома. Атомные ядра изучает ядерная физика. Атомное ядро состоит из нуклонов — положительно заряженных протонов и нейтральных нейтронов, которые связаны между собой при помощи сильного взаимодействия.
Атомное ядро
А́томное ядро́ — центральная часть атома, в которой сосредоточена основная его масса (более 99,9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом. Размеры ядер различных атомов составляют несколько фемтометров, что в более чем в 10 тысяч раз меньше размеров самого атома.
Атомные ядра изучает ядерная физика.
Атомное ядро состоит из нуклонов — положительно заряженных протонов и нейтральных нейтронов, которые связаны между собой при помощи сильного взаимодействия. Протон и нейтрон обладают собственным моментом количества движения (спином), равным [сн 1] и связанным с ним магнитным моментом.
Атомное ядро, рассматриваемое как класс частиц с определённым числом протонов и нейтронов, принято называть нуклидом.
Количество протонов в ядре называется его зарядовым числом — это число равно порядковому номеру элемента, к которому относится атом, в таблице Менделеева. Количество протонов в ядре определяет структуру электронной оболочки нейтрального атома и, таким образом, химические свойства соответствующего элемента. Количество нейтронов в ядре называется его изотопическим числом . Ядра с одинаковым числом протонов и разным числом нейтронов называются изотопами. Ядра с одинаковым числом нейтронов, но разным числом протонов — называются изотонами. Термины изотоп и изотон используются также применительно к атомам, содержащим указанные ядра, а также для характеристики нехимических разновидностей одного химического элемента. Полное количество нуклонов в ядре называется его массовым числом ( ) и приблизительно равно средней массе атома, указанной в таблице Менделеева. Нуклиды с одинаковым массовым числом, но разным протон-нейтронным составом принято называть изобарами.
Как и любая квантовая система, ядра могут находиться в метастабильном возбуждённом состоянии, причём в отдельных случаях время жизни такого состояния исчисляется годами. Такие возбуждённые состояния ядер называются ядерными изомерами.
Краткая история открытия
В 1911 году Резерфорд в своём докладе «Рассеяние α- и β-лучей и строение атома» в философском обществе Манчестера заявил:
Рассеяние заряженных частиц может быть объяснено, если предположить такой атом, который состоит из центрального электрического заряда, сосредоточенного в точке и окружённого однородным сферическим распределением противоположного электричества равной величины. При таком устройстве атома α- и β-частицы, когда они проходят на близком расстоянии от центра атома, испытывают большие отклонения, хотя вероятность такого отклонения мала.
Таким образом Резерфорд открыл атомное ядро, с этого момента и ведёт начало ядерная физика, изучающая строение и свойства атомных ядер.
После обнаружения стабильных изотопов
элементов, ядру самого лёгкого атома
была отведена роль структурной частицы
всех ядер. С 1920 года ядро атома
водорода имеет официальный термин — протон.
После промежуточной протон-электронной
теории строения ядра, имевшей немало
явных недостатков, в первую очередь она
противоречила экспериментальным результатам
измерений спинов и магнитных моментов
ядер[, в 1932 году Джеймсом
Чедвиком была открыта новая электрически
нейтральная частица, названная нейтроном.
В том же году Иваненко и,
независимо, Гейзенберг выдвину
Ядерно-физические характеристики
Зарядовым числом полностью определяется химический элемент. Парой чисел и (массовое число) полностью определяется нуклид. Можно рассмотреть некоторые ядерно-физические характеристики нуклидов с заданными зарядовыми и массовыми числами.
Заряд
Число протонов в ядре определяет непосредственно его электрический заряд, у изотопов одинаковое количество протонов, но разное количество нейтронов. Ядерные свойства изотопов элемента в отличие от химических, могут различаться чрезвычайно резко[.
Впервые заряды атомных ядер определил Генри Мозли в 1913 году. Свои экспериментальные наблюдения учёный интерпретировал зависимостью длины волны рентгеновского излучения от некоторой константы , изменяющейся на единицу от элемента к элементу и равной единице для водорода:
, где
и — постоянные.
Из чего Мозли сделал вывод, что найденная в его опытах константа атома, определяющая длину волны характеристического рентгеновского излучения и совпадающая с порядковым номером элемента, может быть только зарядом атомного ядра, что стало известно под названием закон Мозли.
Масса
Из-за разницы в числе нейтронов изотопы элемента имеют разную массу , которая является важной характеристикой ядра. В ядерной физике массу ядер принято измерять в атомных единицах массы (а. е. м.), за одну а. е. м. принимают 1/12 часть массы нуклида 12C[сн 2]. Следует отметить, что стандартная масса, которая обычно приводится для нуклида — это масса нейтрального атома. Для определения массы ядра нужно из массы атома вычесть сумму масс всех электронов (более точное значение получится, если учесть еще и энергию связи электронов с ядром).
Кроме того, в ядерной физике
часто используется энергетичес
, где — скорость света в вакууме.
Соотношение между а. е. м. и её энергетическим эквивалентом в джоулях:
,
а так как 1 электрон вольт = 1,602176·10−19 Дж, то энергетический эквивалент а. е. м. в МэВ равен:
.
Радиус
Анализ распада тяжёлых ядер уточнил оценку Резерфорда и связал радиус ядра с массовым числом простым соотношением:
,
где — константа.
Так как радиус ядра не является чисто геометрической характеристикой и связан прежде всего с радиусом действия ядерных сил, то значение зависит от процесса, при анализе которого получено значение , усреднённое значение м, таким образом радиус ядра в метрах[:
.
Моменты ядра
Как и составляющие его нуклоны, ядро имеет собственные моменты.
Спин
Поскольку нуклоны обладают собственным механическим моментом, или спином, равным , то и ядра должны иметь механические моменты. Кроме того, нуклоны участвуют в ядре в орбитальном движении, которое также характеризуется определённым моментом количества движения каждого нуклона. Орбитальные моменты принимают только целочисленные значения (постоянная Дирака). Все механические моменты нуклонов, как спины, так и орбитальные, суммируются алгебраически и составляют спин ядра.
Несмотря на то, что число нуклонов в ядре может быть очень велико, спины ядер обычно невелики и составляют не более нескольких , что объясняется особенностью взаимодействия одноимённых нуклонов. Все парные протоны и нейтроны взаимодействуют только так, что их спины взаимно компенсируются, то есть пары всегда взаимодействуют с антипараллельными спинами. Суммарный орбитальный момент пары также всегда равен нулю. В результате ядра, состоящие из чётного числа протонов и чётного числа нейтронов, не имеют механического момента. Отличные от нуля спины существуют только у ядер, имеющих в своём составе непарные нуклоны, спин такого нуклона суммируется с его же орбитальным моментом и имеет какое-либо полуцелое значение: 1/2, 3/2, 5/2. Ядра нечётно-нечётного состава имеют целочисленные спины: 1, 2, 3 и т. д.
Магнитный момент
Измерения спинов стали возможными
благодаря наличию
Магнитный момент чётно-чётных пар, как
и спин, равен нулю. Магнитные
моменты ядер с непарными нуклонами
образуются собственными моментами
этих нуклонов и моментом, связанным
с орбитальным движением
Электрический квадрупольный момент
Атомные ядра, спин которых больше или равен единице, имеют отличные от нуля квадрупольные моменты, что говорит об их не точно сферической форме. Квадрупольный момент имеет знак плюс, если ядро вытянуто вдоль оси спина (веретенообразное тело), и знак минус, если ядро растянуто в плоскости, перпендикулярной оси спина (чечевицеобразное тело). Известны ядра с положительными и отрицательными квадрупольными моментами. Отсутствие сферической симметрии у электрического поля, создаваемого ядром с ненулевым квадрупольным моментом, приводит к образованию дополнительных энергетических уровней атомных электронов и появлению в спектрах атомов линий сверхтонкой структуры, расстояния между которыми зависят от квадрупольного момента.
Энергия связи
Большая энергия связи нуклонов, входящих в ядро, говорит о существовании ядерных сил, поскольку известные гравитационные силы слишком малы, чтобы преодолеть взаимное электростатическое отталкивание протонов в ядре. Связь нуклонов осуществляется чрезвычайно короткоживущими силами, которые возникают вследствие непрерывного обмена частицами, называемыми пи-мезонами, между нуклонами в ядре.
Экспериментально было обнаружено,
что для всех стабильных ядер масса
ядра меньше суммы масс составляющих
его нуклонов, взятых по отдельности.
Эта разница называется дефекто
,
где и — массы свободного протона и нейтрона, — масса ядра.
Согласно принципу эквивалентно
Энергия, эквивалентная дефекту массы, называется энергией связи ядра и равна:
,
где — скорость света в вакууме.
Другим важным параметром ядра является энергия связи, приходящаяся на один нуклон ядра, которую можно вычислить, разделив энергию связи ядра на число содержащихся в нём нуклонов:
Эта величина представляет собой среднюю энергию, которую нужно затратить, чтобы удалить один нуклон из ядра, или среднее изменение энергии связи ядра, когда свободный протон или нейтрон поглощается в нём.
Как видно из поясняющего рисунка, при малых значениях массовых чисел удельная энергия связи ядер резко возрастает и достигает максимума при (примерно 8,8 Мэв). Нуклиды с такими массовыми числами наиболее устойчивы. С дальнейшим ростом средняя энергия связи уменьшается, однако в широком интервале массовых чисел значение энергии почти постоянно ( МэВ), из чего следует, что можно записать .
Такой характер поведения средней
энергии связи указывает на свойство
ядерных сил достигать
Общая закономерность зависимости энергии связи от массового числа описывается формулой Вайцзеккера в рамках теории капельной модели ядра.
Устойчивость ядер
Из факта убывания средней энергии связи для нуклидов с массовыми числами больше или меньше 50-60 следует, что для ядер с малыми энергетически выгоден процесс слияния — термоядерный синтез, приводящий к увеличению массового числа, а для ядер с большими — процесс деления. В настоящее время оба этих процесса, приводящих к выделению энергии, осуществлены, причём последний лежит в основе современной ядерной энергетики, а первый находится в стадии разработки.
Если рассмотреть таблицу
Z |
N=A-Z |
A |
Число нуклидов |
Чётное |
Чётное |
Чётное |
167 |
Чётное |
Нечётное |
Нечётное |
55 |
Нечётное |
Чётное |
Нечётное |
53 |
Нечётное |
Нечётное |
Чётное |
4 |
Таким образом, чётность числа протонов
или нейтронов создаёт