Автор работы: Пользователь скрыл имя, 08 Декабря 2013 в 12:45, курсовая работа
Два ученых, Константин Новоселов и Андрей Гейм, стали лауреатами Нобелевской премии 2010 года по физике, за открытие графена. Данная награда, служит признанием многообещающего будущего данного материала. Он может произвести революцию в индустрии электроники и позволит создавать легкие, крепче стали, материалы. И это только некоторые, из длинного списка возможных применений. Гейм заявил, что он "видит параллели с ситуацией, которая сложилась около 100 лет назад, когда были открыты полимеры. Прошло некоторое время и полимеры вошли в нашу жизнь в виде пластмассы и стали играть важную роль в жизни людей".
Андрей Гейм (слева) и Константи Новоселов (справа) на фоне волнистого слоя графена.
1. Введение……………………………………………………………………...3
2. Получение……………………………………………………………………5
3. Возможные применения………………………………………………….…7
4. Физика………………………………………………………………………..9
4.1. Теория……………………………………………………………………9
4.1.1. Кристаллическая структура………………………………………...9
4.1.2. Зонная структура……………………………………………………10
4.1.3. Линейный закон дисперсии…………………………………………12
4.1.4. Эффективная масса…………………………………………………..14
4.1.5. Парадокс Клейна…………………………………………………….15
4.2. Эксперимент……………………………………………………………...16
4.2.1 Проводимость………………………………………………………….16
4.2.2. Квантовый эффект Холла……………………………………………18
5. Факты о графене……………………………………………………………....21
6. Заключение…………………………………………………………………...23
7. Список литературы……………………………………………………….....23
Рис. 6. a) Квантовый эффект Холла в обычной двумерной системе. b) Квантовый эффект Холла в графене. G = gsgv = 4 — вырождение спектра
В современных образцах графена (лежащих на подложке) вплоть до 45 Т невозможно наблюдать дробный квантовый эффект Холла, но наблюдается целочисленный квантовый эффект Холла, который не совпадает с обычным квантовым эффектом Холла. Наблюдается спиновое расщепление релятивистских уровней Ландау и снятие четырёхкратного вырождения для наинизшего уровня Ландау вблизи точки электронейтральности. Для объяснения этого эффекта предложено несколько теорий, но недостаточное количество экспериментального материала не позволяет выбрать среди них правильную.
Из-за отсутствия запрещённой зоны в графене в структурах с верхним затвором можно сформировать непрерывный p-n переход, когда напряжение на верхнем затворе позволяет инвертировать знак носителей, задаваемый обратным затвором в графене, где концентрация носителей никогда не обращается в ноль (кроме точки электронейтральности). В таких структурах тоже можно наблюдать квантовый эффект Холла, но из-за неоднородности знака носителей значения холловских плато отличаются он приведённых выше. Для структуры с одним p-n переходом значения квантования холловской проводимости описываются формулой
Где ν и ν' — факторы заполнения в n- и p- области соответственно (p-область находится под верхним затвором), которые могут принимать значения и т. д. Тогда плато в структурах с одним p-n переходом наблюдаются при значениях 1, 3/2, 2, и т. д.
Для структуры с двумя p-n переходами соответствующие значения холловской проводимости равны
5. Факты о графене
Для получения нанотрубки (n, m), графитовую плоскость надо разрезать по направлениям пунктирных линий и свернуть вдоль направления вектора R
В статье, опубликованной 10 ноября 2005 года в журнале Nature, Константин Новосёлов и Андрей Гейм утверждают, что электрические заряды в графене ведут себя как релятивистские частицы с нулевой эффективной массой. Эти частицы, известные как безмассовые фермионы Дирака, описываются уравнением Дирака, хотя в эффекте Шубникова-де Гааза (осцилляции магнетосопротивления) наблюдаемые осцилляции соответствуют конечной циклотронной массе.
Так как закон дисперсии для носителей идентичен закону для безмассовых частиц, графен может выступать в качестве экспериментальной лаборатории для квантовой электродинамики.
Квантовый эффект Холла в графене может наблюдаться даже при комнатной температуре из-за большой циклотронной энергии, при которой температурное размытие функции распределения Ферми-Дирака меньше этой энергии (это расстояние между первым и нулевым уровнями Ландау равно 1200 K при магнитном поле 9 Т).
При сворачивании графена в цилиндр получается одностенная нанотрубка. В зависимости от конкретной схемы сворачивания графитовой плоскости, нанотрубки могут обладать или металлическими, или полупроводниковыми свойствами.
В графене нарушается приближение Борна-Оппенгеймера (адиабатическое приближение), гласящее, что в силу медленного движения ионных остовов решётки их можно включить в рассмотрение как возмущение, известное как фононы решётки, — основное приближение, на котором строится зонная теория твёрдых тел.
За получение и исследование свойств графена, Нобелевская премия 2010 года по физике присуждена Андрею Гейму и Константину Новосёлову.
6. Заключение.
Два ученых, Константин Новоселов и Андрей Гейм, стали лауреатами Нобелевской премии 2010 года по физике, за открытие графена. Данная награда, служит признанием многообещающего будущего данного материала. Он может произвести революцию в индустрии электроники и позволит создавать легкие, крепче стали, материалы. И это только некоторые, из длинного списка возможных применений. Гейм заявил, что он "видит параллели с ситуацией, которая сложилась около 100 лет назад, когда были открыты полимеры. Прошло некоторое время и полимеры вошли в нашу жизнь в виде пластмассы и стали играть важную роль в жизни людей".
Андрей Гейм (слева) и Константи Новоселов (справа) на фоне волнистого слоя графена.
Потенциальные области применения, включают замену углеродных волокон в композитных материалах, с целью создания более легковесных самолетов и спутников; замена кремния в транзисторах; внедрение в пластмассу, с целью придания ей электропроводности; датчики на основе графена могут обнаруживать опасные молекулы; использование графеновой пудры в электрических аккумуляторах, с целью увеличения их эффективности; оптоэлектроника; более крепкий, прочный и легкий пластик; герметичные пластиковые контейнеры, которые позволят неделями хранить в нем еду, и она будет оставаться свежей; прозрачное токопроводящее покрытие для солнечных панелей и для мониторов; более крепкие ветряные двигатели; более устойчивые к механическому воздействию медицинские имплантаты; лучшее спортивное снаряжение; суперконденсаторы; улучшение проводимости материалов; высокомощные высокочастотные электронные устройства; искусственные мембраны для разделения двух жидкостей в резервуаре; улучшение тачскринов; ЖКД (жидкокристаллические дисплеи); дисплей на органических светодиодах; графеновые наноленты позволят создать баллистические транзисторы; нанобреши в графене могут позволить создать новые техники скоростного секвенирования ДНК.
И это всего лишь вершина айсберга возможностей применения. Мы стоим еще в самом начале длинного пути. Представьте себе последствия хотя бы только компьютерной революции. IBM уже продемонстрировала 100 GHz транзистор на основе графена и заявила, что на горизонте уже маячит процессор мощностью в 1THz. Графен предоставляет неограниченные возможности практически во всех областях индустрии и производства. Со временем, он вероятно станет для нас обычным материалом, подобно пластику в наши дни.
Список литературы.
(Новоселов К.С. «Двумерные атомные кристаллы»)