Автор работы: Пользователь скрыл имя, 18 Марта 2014 в 22:14, реферат
Спін елементарної частинки — квантова величина, яка не має аналога в класичній механіці й електродинаміці. Це власна невід'ємна властивість елементарної частинки, настільки ж фундаментальна, як заряд або маса. її можна пояснити як момент імпульсу елементарної частинки, що не пов'язаний з її рухом і не залежить від зовнішніх умов.
Іноді під спіном мається на увазі обертання елементарної частинки навколо своєї осі, але це неправильно. Спін не можна розуміти як обертання, він позначає лише наявність у частинки можливостей для цього. Щоб внутрішній момент імпульсу перетворився на класичний момент імпульсу (тобто щоб частинка справді почала обертатися), необхідним є виконання умови s>>1, де s — спін частинки. Ця умова нездійсненна, тому що максимально можливе значення спіну дорівнює 1.
1 Основні характеристики елементарних частинок
1.1. Маса й заряд елементарних частинок
1.2. Спін елементарних частинок і мікрооб'єктів.
2 Класифікація елементарних частинок
2.1. Лептони Мюони
2.2. Адрони Мезони Гіперони
3 Античастинки
4 Перетворення елементарних частинок
5 Взаємодії елементарних частинок.
Реферат на тему:
Елементарні частинки
План
1 Основні характеристики
1.1. Маса й заряд елементарних частинок
1.2. Спін елементарних частинок і мікрооб'єктів.
2 Класифікація елементарних
2.1. Лептони Мюони
2.2. Адрони Мезони Гіперони
3 Античастинки
4 Перетворення елементарних
5 Взаємодії елементарних
Елементарні частинки — найпростіші частинки в складі атома. Сучасний рівень знань не дозволяє точно встановити їхню структуру. Але властивості багатьох частинок вивчені досить добре
Зародження фізики елементарних частинок можна віднести до 90-х років дев'ятнадцятого сторіччя, коли був відкритий електрон (є) Услід за ним ученим стали відомі протон (р) і фотон (у) Далі події розвивалися настільки бурхливо, що це дотепер викликає здивування 1932 рік ввійшов в історію фізики за назвою «рік чудес». Першим з'явилося повідомлення англійського фізика Дж. Чедвіка про відкриття нейтрона (я). Потім американцеві К. Андерсону за допомогою камери Вільсона вдалося знайти в космічному випромінюванні позитрон (є*) — античастинку електрона. Одночасно широко розгорнулися дослідження, покликані визначити властивості цих нових частинок. Було з'ясовано, що вільний нейтрон перетворюється не на дві частинки — протон і електрон, а на три — протон, електрон і якусь нову частинку Е. Фермі дав їй назву «нейтрино» (n), а В. Паулі теоретично обґрунтував її властивості У 1953 рот Райнес і Коуен змогли експериментально підтвердити існування нейтрино Фізика елементарних частинок наочно довела, що далеко не всі фізичні процеси вписуються в рамки класичної електромагнітної моделі Дві нові частинки — нейтрон і позитрон — виявили вузькість сприйняття світу фізичних явищ, що спирався винятково на теорії електромагнітної й гравітаційної взаємодій. Виявилося, що стабільність електронів, протонів і фотонів — це виняток у природі елементарних частинок, адже всі інші елементарні частинки здатні або довільно, або в результаті зіткнень перетворюватися на інші частинки.
Усе це підвело фізиків до ідеї про існування ще двох типів фундаментальних сил: ядерних і слабких. Однак знадобиться ще чимало часу, щоб ця теорія набула остаточної стрункості й завершеності.
До середини XX століття було відомо більше 30 елементарних частинок Ретельне вивчення дозволило виявити їхні загальні властивості.
Так, основними характеристиками елементарних частинок вважають їхню масу спокою й елементарний заряд.
Маси спокою частинок:
Сумарна маса всіх частинок, що утворюють молекулу, атом або ядро, є масою цього мікрооб'єкта, якщо її зменшити на величину дефекту маси Дефект маси прямо пропорційний енергії, яку потрібно витратити, щоб розщепити мікрооб'єкт на елементарні частинки. У ядрах атомів, в яких дефект маси перевищує Ют, нуклони зв'язані між собою найсильніше.
Електричний заряд складного мікрооб'єкта дорівнює сумі зарядів складових його частинок.
Спін є дуже важливою характеристикою як елементарної частинки, так і всього мікрооб'єкта загалом.
Спін елементарної частинки — квантова величина, яка не має аналога в класичній механіці й електродинаміці. Це власна невід'ємна властивість елементарної частинки, настільки ж фундаментальна, як заряд або маса. її можна пояснити як момент імпульсу елементарної частинки, що не пов'язаний з її рухом і не залежить від зовнішніх умов.
Іноді під спіном мається на увазі обертання елементарної частинки навколо своєї осі, але це неправильно. Спін не можна розуміти як обертання, він позначає лише наявність у частинки можливостей для цього. Щоб внутрішній момент імпульсу перетворився на класичний момент імпульсу (тобто щоб частинка справді почала обертатися), необхідним є виконання умови s>>1, де s — спін частинки. Ця умова нездійсненна, тому що максимально можливе значення спіну дорівнює 1.
Спін мікрооб'єкта, наприклад ядра, складається зі спінів нуклонів і орбітальних моментів імпульсу нуклонів, обумовлених рухом нуклонів усередині ядра.
Вивчення спіну елементарних частинок дозволило зробити висновки про їх поведінку серед інших частинок. Спін частинок може бути цілим або дробовим. Це і є підставою для розподілу частинок на бозони і ферміони.
Бозони — частинки з цілочисловим або нульовим спіном. Вони описуються симетричними хвильовими функціями і підкоряються статистичному розподілу Бозе — Ейнштейна.
Ферміони — загальна назва частинок із нецілочисловим спіном. Вони описуються несиметричними хвильовими функціями і підкоряються статистичному розподілу Фермі — Дірака. Складні утворення (ядра атомів), складені з непарного числа фермюнів, є ферміонами, тобто мають нецілочисловий сумарний спін.
Якщо ж мікрооб'єкт складається з парного числа ферміонів, то його сумарний спін цілий, і такі ядра називаються бозонами.
Елементарні частинки поєднують у три групи:
— фотони;
Група фотонів містить у собі тільки одну частинку — фотон, який є носієм електромагнітної взаємодії.
До групи лептонів належать електрон, мюон, електронне і мюонне нейтрино і відповідні античастинки. Усі лептони є ферміонами, тому що їхній спін дорівнює 1/2. Вони не беруть участі в сильних (ядерних) взаємодіях.
Розглянемо основні властивості мюона. Мюон був уперше виявлений у 1936 році, і тоді ж було встановлено, що він є твердим компонентом вторинного космічного випромінювання. Він є продуктом розпаду важчих частинок Маса мюона складає 207тс, що дозволяє зарахувати його до легких частинок Заряд мюона чисельно дорівнює зарядові електрона, але мюони можуть бути як позитивними (μ+), так і негативними (μ-)
Мюони належать до нестабільних частинок, час їхнього життя складає 2,2·10 -6 с Вони зазнають спонтанного розпаду відповідно до наступної схеми:
Мюони взаємодіють із ядрами атомів дуже слабко, тому вони не можуть бути носіями ядерної взаємодії.
Адрони, на відміну від лептонів, можуть брати участь у сильній ядерній взаємодії. До цієї групи належать нуклони (протон і нейтрон), мезони (група частинок j масою меншою, ніж маса протона) і гіперони (група частинок із масою більшою, ніж маса протона).
Мезони бувають двох типів:
π-мезони (піони);
К-мезони (каони).
Піони були вперше штучно отримані бомбардуванням а-частинками атомів Be, С і Сu. π-Мезони сильно взаємодіють із нуклонами й атомними ядрами; вони є головним чинником існування ядерних сил.
Піони можуть бути позитивно (π+) і негативно (π ) зарядженими Чисельно величина їхнього заряду дорівнює величині заряду електрона Крім того, існують і нейтральні (π0) піони.
Піони нестабільні. Час життя заряджених піонів складає 2,6 10-8 с. незаряджених - 0,8 •10-16 с.
Спонтанно я-мезони розпадаються за такою схемою
Маси позитивно і негативно заряджених π-мезонів однакові й складають 273,1 от . Маса π°-мезона дорівнює 264,1 тс Усі мезони належать до легких частинок. Заряджені піони мають нульовий спін.
К-мезони — частинки з нульовим спіном і масою 970/и, Відомі 4 типи каонів
К+ — позитивно заряджений кцон;
К" — негативно заряджений каон;
К° і К° — нейтральні каони.
Час життя К-мезонів коливається в періоді від 10 8 до 10 10 с і залежить від їхнього типу. Розпад заряджених каонів відбувається відповідно до такої схеми
Гіперони — важкі нестабільні елементарні частинки масою (2183-3273)тс, що перевищує масу протона. Відомо кілька типів гіперонів
Спін гіперонів дорівнює 1/2 (для Ω -гіперону 3/2). Час життя гіперонів складає 10-10 с (для Ω°-гіперонів 10-20 с). Розпад гіперонів супроводжується утворенням нуклонів і легких частинок (я-мезонів, електронів, нейтрино і у-квантів)
Властивості гіперонів дозволили виявити ще одну квантову характеристику елементарних частинок — дивність Справа в тому, що розрахований теоретично час життя гіперонів був у 1013 разів менший, ніж експериментально встановлений Закон збереження дивності s пояснив цей факт, а також і те, що гіперон народжується кожного разу у парі з К-мезоном. Слід зауважити, що закон збереження дивності виконується тільки при сильних і електромагнітних взаємодіях.
Квантова теорія передбачала існування античастинок задовго до експериментального доказу цього факту. Наявність у кожної елементарної частинки античастинки підтверджується принципом зарядового спряження. Справді, кожній частинці, m винятком фотона і π°-мезона, відповідає античастинка.
Частинка та античастинка мають однакову масу і рівну тривалість життя у вакуумі. їхній заряд однаковий за величиною і протилежний за знаком. Спін частинки та античастинки однаковий.
Довгий час вважалося, що, завдяки подібності характеристик, частинки та античастинки повинні брати участь в аналогічних процесах (повна симетрія). Пізніше було доведено, що подібна симетрія характерна тільки для сильної й електромагнітної взаємодій, а для слабкої порушується.
Процес зіткнення частинки з античастинкою, у результаті чого виникають інші елементарні частинки або фотони, одержав назву анігіїяція. Першим прикладом анігіляції у фізиці стала взаємодія електрона й позитрона з утворенням двох у-квантів:
Для створення пари «частинка-античастинка» потрібна енергія, яка дорівнює або перевищує подвоєну енергію спокою пари. Це відбувається тому, що частинкам необхідно надати значної кінетичної енергії. Наприклад, для створення пари «протон-антипротон» (р-р) потрібно витратити 4,4 ГеВ.
Античастинки можуть анігілювати не тільки з відповідними до них частинками, але і з іншими частинками також. Наприклад, антипротон анігілює і з протоном, і з нейтроном відповідно до наступних схем:
Відмінність частинки та античастинки полягає не тільки в різнойменності їхніх зарядів. Крім цього, розрізняються їхні магнітні моменти. Так, нейтрон (π) і антинейтрон (π) відрізняються знаком власних магнітних моментів.
Існує група елементарних частинок, для яких немає античастинок. Це так звані істинно нейтральні частинки. До них належать фотон, π°-мезон і π-мезон (тη = 1074mt, час життя 7 10 19,с, при розпаді утворюються π-мезони і γ-кванти). Вважають, що істинно нейтральна частинка тотожна зі своєю античастинкою. У силу цього істинно нейтральні частинки не здатні анігілювати, зате вони зазнають взаємних перетворень.
Розглянемо схему розпаду мюона:
На підставі цієї схеми можна зробити висновок, що мюон складається з трьох елементарних частинок, але це твердження не буде правильним. Досить узяти до уваги той факт, що для деяких частинок існує кілька схем розпаду.
Розпад частинки — перетворення її на деяку сукупність нових частинок, породжених у результаті її знищення.
При зіткненнях частинок картина взаємних перетворень не менш багата, ніж при їхньому розпаді. Наприклад, при зіткненні фотона з нейтроном мають місце такі перетворення:
З наведених схем видно, що сума мас спокою кінцевих частинок більша, ніж вихідних. Таким чином, енергія частинок, що зіштовхуються, перетворюється на масу, що не суперечить формулі Ейнштейна:
ΔЕ = Δтс2.
Також зі схем випливає, що неможливо розщепити елементарні частинки ! (зокрема нейтрони), бомбардуючи їх іншими частинками (у цьому випадку фотонами): насправді ж відбувається не розщеплення обстрілюваних частинок, а народження нових, причому значною мірою це відбувається за рахунок енергії частинок, що зіштовхуються.
Взаємні перетворення елементарних частинок мають свої закономірності, що перегукуються із законами класичної фізики. Так, дуже важливим є той факт, що для елементарних частинок також можуть бути застосовані закони збереження їхніх фундаментальних характеристик. Наприклад, для елементарних частинок виконується закон збереження електричного заряду: при будь-якому взаємному перетворенні частинок алгебраїчні суми електричних зарядів вихідних і кінцевих частинок рівні. Це дозволяє відразу виключити з аналізу ті схеми, де ця умова не виконується.
Але як іде справа у світі мікрооб'єктів з описом їхнього руху і стану? Відомо, що в класичній механіці на це питання відповідають закони збереження енергії (1), імпульсу (2) і моменту імпульсу (3):
AU=Q-A, (1)
де AU — зміна внутрішньої енергії системи; Q — теплота, що надається системі; А — робота, здійснена системою над зовнішніми тілами.
де тг т2 — маса тіл 1 і 2;
V1, V2 — швидкість тіл 1 і 2.