Огнеупорные и теплоизоляционные материалы в цветной металлургии

Автор работы: Пользователь скрыл имя, 28 Ноября 2013 в 18:57, реферат

Краткое описание

Огнеупорные материалы - материалы главным образом на основе минерального сырья, обладающие огнеупорностью и способностью противостоять действию агрессивных газов, а так же металлических и шлаковых расплавов.
Теплоизоляция - защита промышленных агрегатов, ковшей и установок (или их отдельных узлов), холодильных камер, трубопроводов от нежелательного теплового обмена с окружающей средой; теплоизоляция обеспечивается созданием специальных покрытий, оболочек из теплоизоляционных материалов, затрудняющих теплопередачу.

Вложенные файлы: 1 файл

огнеупорные и теплоизоляционные.docx

— 46.43 Кб (Скачать файл)

Введение.

Огнеупорные материалы - материалы  главным образом на основе минерального сырья, обладающие огнеупорностью и  способностью противостоять действию агрессивных газов, а так же металлических  и шлаковых расплавов.

Теплоизоляция  - защита промышленных агрегатов, ковшей и установок (или их отдельных узлов), холодильных камер, трубопроводов от нежелательного теплового обмена с окружающей средой; теплоизоляция обеспечивается созданием специальных покрытий, оболочек из теплоизоляционных материалов, затрудняющих теплопередачу.

Классификация огнеупоров.

Огнеупорами называют материалы  из естественного и искусственного сырья и изделия из этих материалов, предназначенные для использования  в условиях высоких температур в  различных тепловых агрегатах, и  способные выдерживать без нагрузки, не разрушаясь, воздействие высоких  температур.

Изготовленные с использованием этих оксидов изделия по огнеупорности, т.е. способности противостоять воздействию высоких температур не разрушаясь, подразделяются на:

  • огнеупорные 1580 - 1770oС;
  • высокоогнеупорные 1770 - 2000oС;
  • высшей огнеупорности - более 2000oС.

По химическому составу  огнеупоры бывают:

  • кислые - на основе SiO2;
  • основные - на основе MgO и CaO;
  • нейтральные - на основе Al2Oи Cr2O3.

Классификация теплоизоляционных  материалов.

К этим материалам относят  огнеупорные легковесные материалы  и собственно теплоизоляционные  материалы. Поэтому, строго говоря, огнеупорами их можно назвать условно.

По температуре применения легковесные огнеупоры подразделяют та три группы:

  • низкотемпературные до 900oС,
  • среднетемпературные 900-1200oС,
  • высокотемпературные > 1200oС.

Свойства огнеупоров.

Важнейшим свойством является огнеупорность, т.е. способность выдерживать без нагрузки воздействие высоких температур (более 1580oС) не расплавляясь.

Определяется она путем  сравнения поведения испытуемого  и стандартного образцов при нагревании по определенному скоростному режиму. Образцы эти имеют форму усеченной  пирамиды с основаниями в виде равносторонних треугольников со сторонами 2 и 8 мм высотой 30 мм. Одна из граней пирамиды расположена перпендикулярно основаниям. Образцы эти называются пироскопами. При нагревании пироскопы теряют форму, наклоняются. Момент касания  верхушки пирамиды подложки определяет огнеупорность изделия испытуемого  состава, если и стандартный образец  ведет себя аналогичным образом.

Свойства теплоизоляционных  материалов.

К группе теплоизоляционных  материалов относят полученные искусственным  путем волокнистые материалы  с высокой пористостью (главным образов из алюмосиликатного сырья) и природные материалы, такие как перлит, асбест (3MgO*2SiO2*2H2O). Искусственные волокнистые материалы можно применять при температуре службы от 1000 до 1800oС в зависимости от соотношения Al2OиSiO2, асбест – до температуре 500oС, когда удаляется гидратная влага, и волокна превращаются в порошок. При температуре 900 1200oС перлит (SiO2, Al2O3,Fe2O3, H2O) вспучивается. Порошок используют как засыпка и утеплитель.

Типы и виды огнеупоров.

Алюмосиликатные огнеупоры (alumina-silica refractories) - огнеупоры, изготовленные преимущественно из А12О3 и SiO2. Алюмосиликатные огнеупоры подразделяют на полукислые (14-28% А12О3), шамотные (28-45%), высокоглиноземистые (49-95%) и применяют во многих тепловых агрегатах. 
 
Безобжиговые огнеупоры (unburned refractories) - изделия из огнеупорных материалов и связки, приобретают требуемые свойства при сушке < 400°С (после нагрева изделий от 400 до 1000°С их называют термообработанными). Связкой могут быть глины, керамические суспензии, растворы фосфатов, щелочные силикаты (жидкое стекло), смолы термопластичные и термореактивные, эластомеры и другие безобжиговые огнеупоры по прочности и пластичности не уступают, а по термостойкости превосходят обожженные огнеупоры. Наиболее широко применяют следующие безобжиговые огнеупоры: кремнеземистые бетонные блоки (для нагревательных колодцев), шамот и высокоглиноземные (для обжиговых агрегатов), магнезиальноизвестковые на смоляной (пековой) связке (для сталеплавильных конвертеров) периклазовые и периклазохромитовые (для сталеразливочных стаканов), магнезиальные в стальных кассетах. 
 
Бескислородные огнеупоры (non-oxygenous refractories) - огнеупоры, изготовленные из тугоплавких бескислородных соединений: карбидов, нитридов, боридов, силицидов, сульфидов. Технология бескислородных огнеупоров включает приготовление порошков бескислородных соединений, формование из них изделий с добавлением связки и последующий обжиг при высоких температуpax. Применение бескислородных огнеупоров при высоких температуpax в окислительной атмосфере ограничено. 
 
Волокнистые огнеупоры (fibrous refractories) - теплоизоляционные, состоящие из волокон огнеупоры в виде формованных (плиты, блоки, листы и др.) с неорганической или органической связкой и неформованных (вата, войлок и др.) изделий. Волокнистые огнеупоры изготовляют преимущественно из высоко-глиноземного и глиноземного стекловолокна и из корундового, поликристалличического волокна, а также из ZrO2 и др. оксидов. 
 
Волокнистые огнеупоры применяют для теплоизоляции и футеровки тепловых агрегатов, а также для заполнения компенсационных швов. 
 
Высокоглиноземистые огнеупоры (high-alumina refractories) - алюмосиликатные огнеупоры, содержащие > 45% А12О3. Высокоглиноземистые огнеупоры подразделяются на муллитокремнеземистые (МКР, 45-62% А12О3), муллитовые (МЛ, 62-72%) и муллитокорундные (МК, 72-90%). Изделия МКР изготавливают на основе шамота из бокситов, глин и бокситов, а также концентратов высокоглиноземистых алюмосиликатов, МЛ и МК - на основе технического глинозема, электрокорунда, маложелезистых бокситов, богатых глиноземом. 
 
Высокоглиноземистые огнеупоры применяют для футеровки сталеразливочных, промежуточных и чугуновозных ковшей, скользящих затворов ковшей, сводов электродуговых печей, лещади и горна домен, печей, воздухонагревателей нагревательных печей и др. тепловых агрегатов с рабочей температурой выше 1300-1350°С, а также в качестве стаканов для разливки стали, трубок для термопар и др. Неформованные высокоглиноземистые огнеупоры типа МЛ и МК применяют в виде набивных масс (для сталеразливочных ковшей), заполнителей огнеупорных бетонов, мертелей и т.п. 
 
Высокоглиноземистые (корундовые) огнеупоры (high-alumina (corundum) refractories) - огнеупоры, содержащие > 95% А12О3. Корундовые огнеупоры изготавливают из порошков электроплавкого корунда и технического глинозема, формуют разными способами и обжигают при 1600-1750°C. Корундовые огнеупоры применяют в агрегатах с рабочей температурой до 1750-1800°С, они обеспечивают необходимую стойкость в условиях контакта со шлаком, жидким металлом, расплавом стекла, щелочами и кислотами. Из корундовых огнеупоров изготовляют корундовые плиты для шиберных затворов сталеразливочных ковшей, изделия для футеровки камер вакууматоров стали, насадки высокотемпературных воздухонагревателей, чехлы термопар, тигли для плавки стекол, металлов и др. Неформовованные корундовые огнеупоры - мертели и бетоны с корундовым заполнителем применяют для футеровки патрубков вакууматоров стали, а массы и обмазки - для изгототовления и ремонта огнеупорных футеровок с рабочей температурой > 1700°С. 
 
Динасовые огнеупоры (silica refractories) - см. кремнеземистые огнеупоры. 
 
Известковопериклазовые (доломитовые) огнеупоры (lime-periclase (dolomite) refractories) - огнеупоры, изготовленные из доломита, в т.ч. с добавлением периклазового порошка с массовой долей MgO - 10-50% и СаО - 45-85%. Безобжиговые известковопериклазовые огнеупоры изготавливают формованием порошков обожженного доломита на органической связке (каменноугольная смола, пекбез или с термической обработкой при 300-600°С); огнеупорность их > 2000°С. Изготовляют также известковопериклазовые огнеупоры, обожженные при 1500-1750°С и сохранившие частично свобобные СаО. Известковопериклазовые огнеупоры устойчивы при взаимодействии с основными шлаками. Безобжиговые известковопериклазовые огнеупоры применяют для футеровки сталеплавильных конвертеров, а обожженные известковопериклазовые огнеупоры - сталеплавильных печей, сталеразливочных ковшей и т.п. Используют неформовованные известковопериклазовые огнеупоры (массы из обожженного доломита со связкой) для набивки блочных и монолитных футеровок электросталеплавильных печей, конвертеров, сталеразливочных ковшей и др. 
 
Карбидкремниевые огнеупоры (silicon-carbide refractiries) - огнеупоры, изготовленные на основе SiC (> 70%). Карбидкремниевые огнеупоры применяют для изготовления муфелей, рекуператоров, чехлов термопар и др.; футеровки электрических нагревательных колодцев, агрегатов производства цинка и алюминия, циклонов трубопроводов и т.п. Карбидкремниевые огнеупоры на нитридной и оксинитридной связке используют также для футеровки нижней части шахты домен, печей. Неформованные карбидкремниевые огнеупоры применяют для покрытий щитовых экранов котельных топок, в виде мертелей и масс при выполнении огнеупорной кладки. 
 
Кремнеземистые огнеупоры (silicons refractories) - огнеупоры, содержащие > 80% SiO2. К ним относят наиболее распространенные динасовые и кварцевые огнеупоры, а также кварц, стекло. 
 
Динасовые огнеупоры содержат > 93% SiO2 или 80-93% SiO2 (при изготовлении с добавками) и изготовливаются из кварцитов. В порошок кварцита добавляют известковое молоко и железистые добавки, формуют на прессах изделия задан, размеров и обжигают при 1430-1460°С. Динасовые огнеупоры применяют для футеровки коксовых, стекловар, печей, воздухонагревателей, а также ряда плавильных агрегатов в ЦМ и др. Неформованные динасовые огнеупоры - мертели, материалы для обмазок и т.п. изготавливают из молотых боя динас, огнеупоров и кварцитов, применяют при выполнении и ремонте кладки. 
 
Кварцевое стекло - переохлажденный расплав природного (песок, жильный кварц, горный хрусталь и др.) или синтетического кремнезема, содержащего > 99% SiO2, применяют для изготовления стекловарных печей (в виде блоков), ламп инфракрасного нагрева, защитных чехлов термопар и др. Из кварцевого стекла путем измельчения, формования и обжига (а также без обжига) изготавливают также термостойкие огнеупорные изделия (так называемая кварцевая керамика), используют в качестве погружных стаканов и защитных труб при разливке стали, в лабораторной практике и др. 
 
Легковесные огнеупоры (lightweight refractories) - огнеупоры с высокой (45-85%) пористостью. Легковесные огнеупоры подразделяют на: шамотные, высокоглиноземные, динасовые, глиноземные (корундовые) и другие типы. Основа технологии изготовления: введение в шихту измельченныъ выгорающих добавок (древесных опилок, лигнина, кокса, полистирола и др.) и формование изделий пластичным или полусухим способами; смешивание суспензий из огнеупорных порошков с пеной из клеевого раствора с поверхностно-активной добавкой, химическое газообразование и вспучивание суспензии, содержащей стабилизатор, разливка в форму; формование изделий из легковесных заполнителей (пористых зерен, пустотелых сфер) с добавлением связующего. Заключительная стадия - обжиг при > 1250°С. 
 
Легковесные огнеупоры применяют в качестве теплоизоляционных материалов для футеровки стен и сводов нагревательных и обжиговых печей, котельных топок и др. Экономия энергоресурсов от применения легковесных огнеупоров по сравнению с обычными 10-30%. Высокоогнеупорные легковесные огнеупоры на основе оксидов применяют в вакуумной технике, высокотемпературных печах, силовых установках легательных аппаратов и др. Неформованные легковесные огнеупоры в виде засыпок из зернистых материалов, в т.ч. из пустотелых гранул применяют для внешней теплоизоляции тепловых агрегатов. 
 
Магнезиальные огнеупоры (magnesia refractories) - огнеупоры, содержащие в основе MgO. К ним относят: магнезиальносиликатные (45-85%), магнезиальношпинелидные (40-85%) и магнезиальноизвестковые (10-85%). Магнезиальные огнеупоры изготовляют из обожженных и частично сырых материалов с добавлением связки и обжигом при 1500-1900°С. Магнезиальные огнеупоры имеют высокую стойкость при взаимодействии с расплавами металлов и основных шлаков, широко применяются для футеровки металлургических и других агрегатов. 
 
Магнезиальносиликатные огнеупоры (magnesia-silica refractories) - огнеупоры, состоящие в основном из форстерита (Mg2(SiO4)) и содержащие 50-60% MgO, 25-40% SiO2. Магнезиальносиликатные огнеупоры формуют со связующей добавкой и обжигают при 1450-1550°С (или используют без обжига). Основные свойства магнезиальносиликатных огнеупоров: пористость открытая 22-28%, температуpa начала размягчения под нагрузкой - до 1610-1620°С. Магнезиальносиликатные огнеупоры применяют для футеровки насадок регенераторов мартенов, и стекловарных печей, сталеразливочных ковшей (в т.ч. в виде набивных масс), плавильных агрегатов ЦМ, а также для изготовления сталеразливочных стаканов и др. Неформованные магнезиальносиликатные огнеупоры могут применяться как добавка в металлургических порошках. 
 
Магнезиальношпинелидные огнеупоры (magnesia spinel refractories) - огнеупоры, состящие из периклаза и хромшпинелида MgO. Сг2О3 (в т.ч. со шпинелью MgO o А12О3). Периклазохромитовые огнеупоры содержат > 60% MgO и 5-20% Сг2О3. Периклазохромитовые огнеупоры формуют и обжигают при 1700-1850°С. Для высококачественных периклазохромитовых огнеупоров используют MgO чистотой > 96% и концентраты хромита. Периклазохромитовые огнеупоры применяют для футеровки сводов сталеплавильных печей, вакууматоров стали, кислородных конвертеров (горловина, летки), сталеразливочных ковшей (шлак, пояс), медеплавильных агрегатов, высокотемпературных обжиговых печей и др.). 
 
К магнезиальношпинелидным огнеупорам (также относят: хромитопериклазовые, изготовляемые из смеси периклазового порошка с хромитовой рудой и содержащие 40-60% MgO и 15-35% Сг2О3; периклазошпинельные (> 40% MgO и 5-55% А12О3), шпинельные, состоящие в основном из шпинели состава MgO o А1203 и хромитовые огнеупоры (> 30 % Сг2О3 и < 40% MgO). Магнезиальношпинелидные огнеупоры этих типов используют взамен более дорогостоящих магнезиальношпинелидных периклазохромитовых огнеупоров для футеровки менее ответственных частей (участков) сталеплавильных агрегатов, обжиговых печей и др. Применяют безобжиговые магнезиальношпинелидные огнеупоры для изготовления сталеразливочных стаканов и др. 
 
Неформованные огнеупоры (non-shaped refractories) - огнеупоры, изготовленные без определенной форм и размеров в виде кусковых, порошковых и волокнистых материалов, а также паст и суспензий. К ним относят: металлургические заправочные порошки, заполнители и мелкозернистые компоненты для огнеупорных бетонов, огнеупорные цементы, бетонные смеси и готовые к применению массы, мертели, материалы для покрытий (в т.ч. торкрет-массы), некоторые виды волокнистых огнеупоров. Неформованные огнеупоры могут быть сухими, полусухими, пластичными и жидкотекучими. Неформованные огнеупоры применяют для выполнения и ремонта футеровок сталеразливочных ковшей (набивные и наливные кремнеземные, высокоглиноземные и магнезиальные массы); конвертеров (торкрет-массы), нагревательных и обжиговых печей (шамот, и высокоглиноземные массы), индукционных печей (корундовые и периклазовые массы), коксовых печей (обмазки), подин мартен, и электродуговых печей (заправочные порошки) и т. д. 
 
Неформованные огнеупоры применяют для рабочего слоя футеровки промежуточных и сталеразливочных ковшей, стен и сводов мартеновских печей, в набивных частях футеровки вакууматоров, печей ЦМ и др. 
 
Оксидные огнеупоры (oxide refractories) - огнеупоры, содержащие > 97% высокоогнеупорных оксидов (BeO, MgO, CaO, A12O3, Cr2O3, ZrO2, ThO2 и др.) или их соединений и твердых растворов. Формованные оксидные огнеупоры изготовляют преимущественно из тонкозернистых порошков прессов, или литьем из суспензий с последующим обжигом, а неформованные оксидные огнеупоры - измельчением оксидов, обычно после предварительного обжига и введения необходимых добавок. В металлургии оксидные огнеупоры применяют в виде изделий из технической керамики для аппаратуры при измерении высоких температур, датчиков контроля масс, доли кислорода в стали, тиглей для лабораторных плавильных печей, вкладышей в разлив, устройствах и др. 
 
Периклазовые огнеупоры (periclase (mag-nesite) refractories) - магнезиальные огнеупоры, содержащие > 85% MgO. Периклазовые огнеупоры изготовляют из периклазового порошка с добавлением клеящей связки обжигом при 1600-1900°С; для безобжиговыех периклазовых огнеупоров используют связки из лигносульфонатового сульфата магния и др. Периклазовые огнеупоры применяют для футеровки стенок мартеновских печей, миксеров, печей для плавки меди и никеля, высокотемпературных нагревательных печей, леток кислородных конвертеров и др., а также в виде плит шиберных затворов сталеразливочных ковшей, стаканов для разливки сталей, пористых фурм для продувки стали газами и т.п. Неформованные периклазовые огнеупоры используют для изготовления мертеля, металлургических (заправочных) порошков, набивных масс для вакууматоров стали, индукционных печей и др. 
 
Периклазоуглеродистые огнеупоры (periclase (magnesite)-carbon refractories) - огнеупоры, изготовленные из периклазового порошка с добавлением 6-25% природного или искусственного графита и органической связки (например, фенольной порошкообразной с этиленгли-колем или бакелита). Периклазоуглеродистые огнеупоры применяют для футеровки устройств для подачи газа снизу в конвертерах с комбинированной продувкой и ответственных участков стен мощных электродуговых печей; для шлакового пояса электродуговых печей и сталеразливочных ковшей, а также шиберных затворов. 
 
Плавленые огнеупоры (fused refractories) - огнеупоры, изготовленные расплавлением огнеупорных материалов и разливкой в формы. Для плавки большинства огнеупорных материалов используют электродуговые печи, а кварца - печи сопротивления и кислородные горелки. Корундовые и корундомуллитовые плавленые огнеупоры применяют в виде блоков для изготовления подин нагреватательных печей и колодцев, днищ вакуум-камер и др., бадделеитокорундовые кварцевые плавленые огнеупоры - для футеровки стекловарных печей. Порошки плавленых периклаза, глинозема и шпинелей (MgO o А12О3; Mg o Сг2О3) используют для изготовления огнеупорных изделий и бетонов. Корундовые порошки из глинозема и боксита применяются также в производстве абразивов. 
 
Полукислые огнеупоры (semi-silicious (silica-acid) refractories) - алюмосиликатные огнеупоры с массовой долей А12О3 от 14 до 28 %. Полукислые огнеупоры применяют преимущественно для малоответственных участков футеровок металлургических агрегатов, в т.ч. коксовых печей, в виде капсул для определения серы и углерода в чугуне, стали и др. 
 
Смолодоломитовые огнеупоры (tar-dolomite refractories) - формованные на прессах изделия из порошка обожженного доломита (крупность зерен до 6-8 мм), смешанного при нагревании до 100-120°С с 4-6% каменноугольной смолы или пека. Смолодоломитовые огнеупоры имеют кажущуюся плотность 2800-2900 кг/м3, предел прочности при сжатии 2000-4000 МПа, устойчивы против основных шлаков. При добавке в массу магнезитового порошка изделие называются смолодоломитомагнезитовыми. Смолодоломитовые огнеупоры применяются для футеровки кислородных конвертеров. Иногда смолодоломитовые огнеупоры применяют в кладке дуговых сталеплавильных печей. 
 
Смоломагнезитовые огнеупоры (tar-magnesite refractories) - изделия и массы, приготовленной из обожженного магнезитового (периклазового) порошка смешением при нагреве до 100-120°С с 4-6% каменноугольной смолы или пека. При содержании примеси < 2-3 % СаО стойки к гидратации на воздухе; применение аналогично смолодоломитовым огнеупорам. 
 
Углеродистые огнеупоры (carbon refractories) - огнеупоры, состоящие преимущественно из свободного углерода или содержащие углерод в качестве основного компонента. К углеродистым огнеупорам относят: угольные и графитированные блоки, изготовленные из кокса и термоантрацита с каменноугольной смолой, пеком, битумом, антрацитовым маслом, обжигаемые при 1100-1450°С; графитированные изделия из нефтяного кокса с графитовой структурой и малым содержанием золы, получаемые обжигом при > 2000°С; пирографит - продукт разложения углеродсодержащего газа на нагретой поверхности и др. К углеродистым огнеупорам относят также углеродсодержащие огнеупоры, изготовленные из графита, огнеупорной глины, шамота (в т.ч. высокоглиноземистого), корунда и т.п. Углеродистые огнеупоры отличаются высокой теплопроводностью, низким ТКЛР, хорошей стойкостью при взаимодействии с расплавами металлов и шлаками. Углеродистые огнеупоры применяют для футеровки нижнего строения домен, печей, электротермических печей, агрегатов для плавки свинца, меди и др., а также для изготовления погружных стаканов, стопоров-моноблоков, вкладышей для изложниц, тиглей для плавки цветных металлов и др. Неформованные углеродистые огнеупоры из коксрвых порошков на каменноугольной смоле применяют для заполнения швов кладки, углеродсодержащие - для футеровки желобов домен, печей и др. 
 
Цирконистые огнеупоры (zircon/zirconia refractories) - огнеупоры, на основе бодделеита ZrO2 (67,1 % ZrO2) и циркона (ZrSiO4). Цирконистые огнеупоры в зависимости от содержания ZrO2 подразделяют на: оксидциркониевые (> 85 % ZrO2), бадде-леитокорундовые (20-85 % ZrO2 и до 65 % А12О3), цирконовые (> 50 % ZrO2 и > 25 % Si2O,), оксидцирконийсодержащие (< 20 % ZrO2). Цирконистые огнеупоры отличаются высокой огнеупорностью (до 2600°С), хорошей стойкостью при взаимодействии с расплавами металлов и шлаков, высокой прочностью при 2200-2400°С и высокой термостойкостью. Высокоплотную керамику из ZrO2 применяют в виде чехлов термопар, фильтров для сплавов, а также нагревательных элементов при температуpax до 2200°С в печах с резистивным и индукционным нагревом. Зернистые огнеупоры из ZrO2 используют в устройствах для разливки стали, для футеровки агрегатов с > 1800°С, тиглей для плавки ряда металлов и сплавов. Стаканы из циркона (в т.ч. с графитом) с добавлением пластифицированного компонента используют в промежуточных ковшах при разливке стали. 
 
Шамотные огнеупоры (fireclay refractories) - алюмосиликатные огнеупоры, содержащие 28-45% А12О3 и 50-70 SiO2. Технология производства формованных шамотных огнеупоров включает: обжиг глины (каолина) при 1300-1500°С во вращающихся или шахтных печах, измельчение полученного шамота, смешивание со связующей глиной и водой (иногда с добавлением других связующих материалов), формование, сушку и обжиг при 1300-1400°С. Шамотные огнеупоры применяют для футеровки доменных печей, сталеразливочных ковшей, нагревательных и обжиговых печей, котельных топок и др., а также для изготовления сифонных изделий для разливки стали. Неформованные шамотные огнеупоры изготовляют из измельчения шамота и связующих материалов и применяют в виде мертелей, набивных масс, порошков, заполнителей бетонов и др. при выполнении и ремонте огнеупорных футеровок разных тепловых агрегатов.

Огнеупоры в цветной  металлургии.

Огнеупоры – это особый вид конструкционных материалов, которые благодаря ряду специфических свойств находят применение при сооружении нагревательных и плавильных печей и агрегатов, в футеровках различных устройств, работающих как собственно в промышленности строительных материалов, так и в химической, стекловаренной и металлургической промышленности.

Огнеупоры эксплуатируются  в различных температурных условиях и в разнообразных средах. Одни служат в контакте с расплавленным  металлами и шлаками.

Применение более качественных и новых видов огнеупоров позволяет  достичь значительных успехов в  производстве и использовать новые  технологии. С огнеупорами связан практически весь прогресс в сталеплавильном  производстве. Достаточно напомнить, что  замена кислой футеровки конвертеров, мартеновских и электропечей на основную позволили решить вопросы как  роста производства, так и качества металла.

Использование в конструкции  верхнего строения мартеновской печи основных огнеупоров позволило применить  кислород для интенсификации горения  топлива и поднять температуру  факела до 1800 1900oС (при кислом своде температура факела не должна была превышать 1700oС). Применение основных огнеупоров в элементах нижнего строения дало возможность интенсифицировать плавку путем вдувания кислорода в металлическую ванну.

Замена смолодоломитной футеровки кислородных конвертеров периклазоуглеродистой (периклазографитовой) позволила увеличить компанию конвертера по футеровке с 350 400 плавок до нескольких десятков тысяч плавок.

Основным потребителем огнеупоров является металлургическая промышленность. На ее долю приходится потребление  более 60 % производимых огнеупоров. Потребление  других отраслей оценивается такими цифрами: цветная металлургия – 4; химия – 4,7; строительные материалы  – 8,1; машиностроение – 10,3. Задача повышения  эффективности использования огнеупоров решается за счет повышения качества обычных огнеупоров и создания новых  видов огнеупоров (периклазоуглеродистые, огнеупоры на основе волокнистых материалов, композитов на основе систем Si – Al – O – N, RnOm – C и др.). Большое значение имеют качественные изменения в металлургии: сокращение доли мартеновской стали, увеличение объема непрерывной разливки стали, а также использование рациональных схем футеровок конвертеров, основных и промежуточных сталеразливочных ковшей.

Теплоизоляционные материалы в цветной металлургии.

Применение теплоизоляционных материалов в конструкциях печей позволяет уменьшить тепловые потери через стены и тем самым увеличить тепловой к. п. д. и производительность печей. В печестроении находят применение два типа теплоизоляционных материалов — легковесные огнеупоры и природные теплоизоляционные материалы.

Легковесные огнеупоры по химико-минералогическому составу не отличаются от обычных огнеупоров, но имеют большую пористость и, следовательно, малые объемную массу, теплопроводность, механическую прочность, термостойкость и шлакоустойчивость. Высокая огнеупорность легковесов допускает их применение для внутренней кладки печей, но при условии покрытия их огнеупорной обмазкой. Не следует допускать прямого их соприкосновения с расплавленными металлом и шлаком. Печи, выложенные изнутри легковесными огнеупорами, быстро разогреваются и имеют сравнительно меньшие потери тепла на нагрев кладки, что важно для периодически действующих печей.

Существуют три способа производства легковесных огнеупоров — способ выгорающих добавок, пенообразующий и химический. При изготовлении способом выгорающих добавок в огнеупорную массу вводят древесные опилки, древесный уголь и другие углеродистые вещества в количестве 25—35% (по массе). При обжиге отформованных изделий эти добавки выгорают, создавая поры. Режимы сушки и обжига легковесов не отличаются от режимов для обычных огнеупоров данного типа.

При пенообразующем способе во влажную массу огнеупора (шликера) вводят эмульсию канифольного мыла или мыльного корня, способных образовывать пену. В качестве стабилизатора пены применяют столярный клей. Вспененную массу разливают в формы, сушат и обжигают.

При химическом способе к огнеупорным массам добавляют газообразующие вещества, такие как известняк или доломит, в раствор серной кислоты. Образование пористой структуры происходит как следствие выделения пузырьков СOв результате протекающей химической реакции. Для стабилизации объема сырца в процессе его вспучивания выделяющимся газом в шихту вводят высокоглиноземистый цемент или гипс. Полученную вспученную массу разливают в формы, сушат и обжигают. После обжига легковесные огнеупорные изделия подвергают механической обработке, так как в процессе обжига происходит их значительное коробление.

Легковесные огнеупоры, полученные способом выгорающих добавок, имеют объемную массу 1000—1300 кг/мит еплопроводность 0,3—0,5 Вт/(м-К). Пенолегковесные огнеупоры отличаются от них в основном меньшей объемной массой (400—800 кг/м3) и меньшей теплопроводностью (0,1—0,2 Вт/(м-К)), т.е. более высокими теплоизоляционными свойствами.

Природные теплоизоляционные  материалы применяются главным образом для наружной изоляции печей. Используются они в виде формованных изделий, ваты, засыпки, обмазки, наносимых на нагреваемую поверхность. Из природных теплоизоляционных материалов наибольшее распространение получили асбест, диатомит и трепел, зонолит и обожженный вермикулит.

Асбест — минерал волокнистого строения, способный расщепляться на тонкие, гибкие и прочные волокна. Температура плавления асбеста 1500° С, но при 700° С асбест теряет конституционную влагу и рассыпается в порошок, его теплоизоляционные свойства снижаются, поэтому используется он при температуре до 500° С.Промышленностью выпускаются изделия из асбеста различной формы и размеров, но в основном он применяется в виде картона, шнура, ваты и как наполнитель многих теплоизоляционных обмазок.

Диатомит и трепел — осадочные породы, состоящие преимущественно из аморфного кремнезема. Они отличаются большой пористостью, пластичностью, нерастворимостью в воде и кислотоупорностью. Температура размягчения их около 1000° С. Применяются в сыром и обожженном состоянии в виде засыпки и готовых изделий при температуре до 900° С. Диатомитовые изделия выпускаются трех классов по объемной массе: 500, 600 и 700 кг/м3.

Зонолит и обожженный вермикулит применяют для теплоизоляции высокотемпературных печей в виде засыпки. Предельная рабочая Температура их 900° С.

 

 

 

 

 

 

 

 

 

 

 

 

Список использованной литературы.

  1. А.Л. Юрков, Л.М. Аксельрод. Свойства теплоизоляционных материалов (обзор). //Новые огнеупоры. №3. 2005 г. с. 18-22.
  1. Дюдкин Д.А., Ухин В.Е.  Огнеупоры и их эксплуатация.

  1. Огнеупоры: материалы, изделия, свойства и применение. // Под ред. И.Д. Кащеева. Москва.: «Теплотехник», 2004 г.
  2. Г.М. Мартыненко. Новые технологии, перспективные  огнеупорные и теплоизоляционные  материалы в области строительства печей и дымовых труб // Пече-трубостроение: тепловые режимы, конструкции, автоматизация и экология: Труды III Международного конгресса // Под ред. В.Г. Лисиенко. Екатеринбург, «Инженерная мысль». 2008 г.

 

 

Министерство образования науки  и спорта Украины

Донецкий национальный технический  университет

Физико – металлургический факультет

 

 

 

Научно – исследовательская  работа студента на тему:

«Огнеупорные и теплоизоляционные  материалы в цветной металлургии»

 

 

Подготовил 

Студент 4 курса

ФМФ, группы МКМ-10

Куркчи Денис Александрович

Научный руководитель профессор, д.т.н.

Информация о работе Огнеупорные и теплоизоляционные материалы в цветной металлургии