Автор работы: Пользователь скрыл имя, 18 Февраля 2013 в 08:14, реферат
Представим себе закрытый металлический сосуд (котел), частично заполненный водой. Если под ним зажечь огонь, то вода начнет нагреваться, а затем закипит, превращаясь в пар. Давление внутри котла будет повышаться, и если стенки его недостаточно прочны, он может даже взорваться. Это показывает, что в паре накопился запас энергии, который, наконец, проявил себя взрывом. Нельзя ли заставить пар совершать какую-либо полезную работу? Этот вопрос уже очень давно занимал ученых. История науки и техники знает много интересных изобретений, в которых человек стремился использовать энергию пара. Некоторые из этих изобретений были полезными, другие были просто хитроумными игрушками, но, по крайней мере, два изобретения надо назвать великими; они характеризуют целые эпохи в развитии науки и техники. Эти великие изобретения – паровая машина и паровая турбина. Паровая машина, получившая промышленное применение во второй половине XVIII в., совершила переворот в технике. Она быстро стала главным двигателем, применяемым в промышленности и на транспорте. Но в конце XIX и начале XX вв. достижимая мощность и быстроходность паровой машины уже стали недостаточными.
Таким образом, стали распространяться двух- и трехкорпусные турбины, которые, отличаясь высокой экономичностью, были очень дорогими и громоздкими.
В последующем развитии турбостроения в этом вопросе также наметилось известное отступление в сторону упрощения конструкции турбины и сокращения числа ее ступеней. Турбины мощностью до 50 МВт при 3000 об/мин довольно долго строились только двухкорпусными. Новейшие конденсационные турбины такой мощности, выпускаемые передовыми заводами, строятся однокорпусными.
Одновременно с конструктивными усовершенствованиями турбин умеренного давления (в 20 – 30 бар) в период с 1920 по 1940 г. стали распространяться более экономичные установки высокого давления, достигающего 120 – 170 бар.
Применение пара высоких параметров, существенно повышающее экономичность турбинной установки, потребовало новых решений в области конструирования паровых турбин. Значительные успехи были достигнуты в деле применения легированных сталей, имеющих достаточно высокий предел текучести и малые скорости ползучести при температурах 500 – 550° С.
Наряду с развитием конденсационных турбин уже в начале этого столетия начинают применяться установки для комбинированной выработки электрической энергии и тепла, которые потребовали построения турбин с противодавлением и промежуточным отбором пара. Первая турбина с регулированием постоянства давления отбираемого пара была построена в 1907 г.
Условия капиталистического хозяйства препятствуют, однако, использованию всех преимуществ комбинированной выработки тепла и электрической энергии. В самом деле, емкость теплового потребления за границей в большинстве случаев ограничивается потреблением предприятия, на котором устанавливается турбина. Поэтому турбины, допускающие использование тепла отработавшего пара, за границей чаще всего строятся на небольшие мощности (до 10 – 12 МВт) и рассчитываются на обеспечение теплом и электрической энергией лишь индивидуального промышленного предприятия. Характерно, что наиболее крупные (25 МВт, а затем 50 и 100 МВт) турбины с отбором пара были построены в Советском Союзе, так как плановое развитие народного хозяйства создает благоприятные условия для комбинированной выработки тепла и электрической энергии.
В послевоенный период во всех технически развитых европейских странах, а также в США наблюдается все ускоряющееся развитие энергетики, которое приводит ко все большему росту мощности энергетических агрегатов. Одновременно сохраняется тенденция применения все более высоких начальных параметров пара.
Конденсационные одновальные турбины достигают мощности 500 – 800 МВт, а при двухвальном исполнении уже построены установки мощностью 1000 МВт.
По мере увеличения мощностей целесообразным являлось и повышение начальных параметров пара, которые последовательно выбирались на уровне 90, 130, 170, 250 и, наконец, 350 бар, при этом повышались также и начальные температуры, которые составили 500, 535, 565, 590, а в отдельных случаях до 650° С. Следует иметь в виду, что при температурах, превышающих 565° С, приходится применять очень дорогие и менее изученные стали аустенитного класса. Это привело к тому, что в последнее время наблюдается тенденция к некоторому отступлению в область температур, исключающих необходимость использования аустенитных сталей, т.е. температур на уровне 540° С.
Большое значение для развития турбин малой мощности и, в особенности для развития судовых паровых турбин имели успехи, достигнутые в 1915–1920 гг. в области построения редукторов. До этого времени судовые турбины выполнялись на число оборотов, равное числу оборотов гребных винтов, т.е. 300 – 500 об/мин, что снижало экономичность установки и приводило к большим габаритам и весам турбин.
С того времени, когда в работе зубчатых редукторов были достигнуты полная надежность и высокая экономичность, судовые турбины снабжаются редукторными приводами и выполняются на повышенное число оборотов, которое соответствует наивыгоднейшим условиям работы турбины.
Для стационарных турбин малой мощности также оказалось целесообразным применение редукторной передачи между турбиной и генератором. Наибольшее число оборотов, возможное при непосредственном соединении валов турбины и генератора 50-периодного переменного тока, составляет 3000 об/мин. При мощностях ниже 2,5 МВт это число оборотов невыгодно для конденсационной турбины. С развитием редукторостроения оказалось возможным выполнять турбины на более высокие числа оборотов (5000–10000 обIмин), что позволило повысить экономичность турбин небольшой мощности, а главное уменьшить их размеры и упростить конструкцию.
Типовая конструкция современной паровой турбины
При проектировании паровой турбины учитывают ряд предъявляемых к ней требований:
– надежность и безаварийность работы;
– высокая тепловая экономичность;
– высокая равномерность вращения и быстроходность, допускающая использование быстроходных электрогенераторов с возможностью их непосредственного соединения с валом двигателя;
– возможность получения в двигателе любой необходимой единичной мощности;
– возможность автоматизации работы всей установки;
– простота обслуживания установки;
– компактность двигателя и его относительная дешевизна;
– возможность работы по замкнутому циклу.
Рассмотрим конструкцию типичной современной активной турбины на примере турбины высокого давления Ленинградского металлического завода. Мощность этой турбины 50 тыс. кВт при 3000 об/мин. Турбина работает паром с начальным давлением 88 бар при температуре 535° С.
Первые 19 дисков умеренного диаметра выполнены за одно целое с валом турбины. Последующие три диска посажены с натягом на вал. На ободах каждого диска укреплены рабочие лопатки. Диски разделены неподвижными промежуточными диафрагмами. В каждой диафрагме размещена неподвижная сопловая решетка, в которой поток пара ускоряется и приобретает необходимое направление для входа в каналы рабочей решетки, образованной рабочими лопатками. Постепенное увеличение от ступени к ступени высоты сопловых решеток и рабочих лопаток объясняется тем, что по мере расширения пара объем его возрастает. Это требует постепенного увеличения проходных сечений проточной части. Сопловые решетки первой регулирующей ступени укреплены в пароподводящих патрубках, которые вварены в корпус турбины. Пар к соплам первой регулирующей ступени подводится через четыре регулирующих клапана, два из которых расположены на верхней половине корпуса, а два – по бокам нижней части корпуса. Часть корпуса, охватывающая ступени высокого давления, выполнена в виде стальной отливки. Ступени низкого давления располагаются в сварной части корпуса. Выходной патрубок турбины также сварен из листвой стали, и при помощи сварки соединяется с конденсатором. За счет охлаждения отработавшего в турбине пара в конденсаторе поддерживается давление ниже атмосферного. Обычно это давление составляет 0,03 – 0,06 бар. В корпусе турбины предусмотрено несколько патрубков для отбора пара из промежуточных ступеней турбины. Эти отборы используются для подогрева питательной воды, подаваемой в паровой котел.
При изменении нагрузки оказывается необходимым изменять расход протекающего через турбину пара. Это достигается соответствующим открытием регулирующих клапанов. Благодаря тому, что клапаны закрываются и открываются последовательно, часть пара, проходящая через полностью открытые клапаны, не подвергается мятию и поступает к соплам первой ступени с полным начальным давлением. Лишь та доля пара, которая проходит через частично открытый клапан, дросселируется в клапане и подходит к своей сопловой группе с пониженным давлением. Способ управления впуском пара в турбину, при котором доступ пара к сопловым группам открывается последовательно, называется сопловым парораспределением. Первая ступень, получающая в зависимости от нагрузки турбины пар из различного числа сопловых групп, называется регулирующей ступенью. Наряду с таким способом парораспределения существует также дроссельный способ подвода пара, отличающийся тем, что все количество подводимого к турбине пара проходит через общий регулирующий клапан. При частичных нагрузках турбины пар подвергается мятию вследствие частичного закрытия дроссельного регулирующего клапана.
Вал турбины лежит на двух подшипниках, которые воспринимают вес ротора. Передний подшипник в турбине, одновременно фиксирует осевое положение ротора по отношению к статору и воспринимает осевые усилия, действующие на ротор. Таким образом, передний подшипник является комбинированным опорно-упорным подшипником. Упорная его часть построена по принципу сегментного подшипника Митчеля.
В местах, где вал проходит через корпус турбины, расположены уплотнения, которые называются концевыми уплотнениями вала. Переднее уплотнение вала служит для уменьшения утечки пара из корпуса турбины в машинное помещение. Заднее уплотнение предупреждает возможность засасывания атмосферного воздуха в выхлопной патрубок и конденсатор турбины. Засасывание воздуха в конденсатор привело бы к повышению давления в нем и уменьшению экономичности работы турбины. Для того чтобы предупредить просачивание воздуха в конденсатор, к заднему уплотнению подводится пар низкого давления. В местах, где вал проходит через центральные отверстия промежуточных диафрагм, установлены промежуточные уплотнения, препятствующие протечке пара из одной ступени в другую, минуя сопловые решетки ступени.
Правый конец вала турбины при помощи муфты соединен с ротором генератора, один из подшипников которого расположен на корпусе выхлопного патрубка турбины.
Передний конец вала турбины гибкой муфтой соединен с валом двустороннего центробежного масляного насоса, который всасывающим патрубком опирается на прилив в картере переднего подшипника. В полость всасывания насоса масло подается под небольшим избыточным давлением с помощью инжектора.
Масляный насос обеспечивает подвод масла к органам управления системы регулирования (с давлением 20 бар), а также с помощью инжектора подает масло к подшипникам генератора и турбины (при давлении 0,5 бар). На конце вала насоса располагается быстроходный упругий регулятор скорости, который управляет золотниками системы регулирования.
В поперечных расточках переднего конца вала турбины размещены два бойка предохранительного выключателя, который вызывает полное прекращение подачи пара к турбине в случае повышения скорости ее вращения на 10 – 12%.
В современных турбинах большой мощности предусматривается специальное валоповоротное устройство, при помощи которого можно медленно вращать вал неработающей турбины. Валоповоротное устройство состоит из электродвигателя, связанного с червячной передачей.
Червяк с помощью червячного колеса вращает промежуточный валик, на котором, на винтовой шпонке, располагается ведущая шестерня. Последняя может смещаться в осевом направлении и входить в зацепление с большой шестерней, укрепленной на полумуфте, соединяющей вал турбины и вал генератора. При пуске турбины, когда ее вал ускоряется паром, ведущая шестеренка проворачивается по винтовой шпонке и автоматически выходит из зацепления с шестерней, сидящей на полумуфте турбины.
Корпус турбины, а также корпусы подшипников имеют горизонтальный разъем на уровне оси вала турбины. Для того чтобы разобрать турбину, необходимо разболтать соединение фланцев горизонтального разъема корпуса турбины и корпусов подшипников. После этого могут быть подняты крышки корпусов.
Современные турбины для привода генераторов электрического тока рассчитываются на работу с постоянным числом оборотов. Сохранение постоянства числа оборотов обеспечивается автоматическим регулированием.
Управление органами регулирования осуществляется маслом. Поэтому система регулирования обычно сочетается с системой смазки.
В подшипниках турбины выделяется значительное количество тепла, которое необходимо отводить для того, чтобы температура подшипника не превышала допустимой (примерно 60° С). Отвод тепла от подшипника обеспечивается циркуляционной системой смазки, при которой масло не только уменьшает трение, создавая пленку между валом и вкладышами подшипника, но и служит для охлаждения подшипника. Нагретое масло, покидающее подшипник, после охлаждения вновь используется для смазки.
Детали ротора паровой турбины (лопатки, диски), даже при нормальном числе оборотов турбины, подвергаются высоким напряжениям, которые вызываются центробежными силами. Повышение числа оборотов турбины сверх рабочего приводит к такому увеличению центробежных сил, которое может вызвать аварию турбины. Для того чтобы предохранить турбину от недопустимого повышения числа оборотов в случае неисправной работы основной системы регулирования, современные турбины снабжаются предохранительными выключателями. Предохранительный выключатель располагается, как правило, на валу турбины. В случае если число оборотов турбины превысит нормальное число оборотов на 10–12%, предохранительный выключатель вызывает быстрое закрытие пускового клапана турбины и ее остановку.
Особенности крупных паровых турбин
Повышение параметров пара и единичной мощности агрегатов, а также введение промежуточных перегревов пара обусловили применение турбин с большим числом цилиндров. Увеличение расхода пара, с одной стороны, повышает экономичность первых ступеней турбины вследствие увеличения высот лопаток в цилиндре высокого давления (ЦВД), а с другой стороны, усложняет проектирование последних ступеней. Стремление повысить термический КПД цикла приводит к уменьшению абсолютного давления в конденсаторе до 0,03 – 0,035 бар, что в значительной мере увеличивает объемный расход пара последней ступенью. Для получения минимальных потерь с выходной кинетической энергией необходима, возможно, большая ометаемая лопатками площадь. Требуемая ее величина достигается, во-первых, увеличением длины лопатки и диаметра последней ступени, во-вторых, увеличением числа параллельных потоков пара в части низкого давления (ЧНД). С этой целью возможно также применение двухъярусных лопаток.
Информация о работе Паровые турбины как основной двигатель на тепловых электростанциях