Автор работы: Пользователь скрыл имя, 23 Апреля 2013 в 19:51, лекция
С различными формами движения материи связывают различные формы энергии: механическую, тепловую, электромагнитную, ядерную и др. В одних явлениях форма движения материи не изменяется (например, горячее тело нагревает холодное), в других — переходит в иную форму (например, в результате трения механическое движение превращается в тепловое). Однако существенно, что во всех случаях энергия, отданная (в той или иной форме) одним телом другому телу, равна энергии, полученной последним телом.
В системе, в которой действуют также неконсервативные силы, например силы трения, полная механическая энергия системы не сохраняется. Следовательно, в этих случаях закон сохранения механической энергии несправедлив. Однако при «исчезновении» механической энергии всегда возникает эквивалентное количество энергии другого вида. Таким образом, энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой. В этом и заключается физическая сущность закона сохранения и превращения энергии — сущность неуничтожимости материи и ее движения.
§ 14. Графическое представление энергии
Во многих задачах рассматривается одномерное движение тела, потенциальная энергия которого является функцией лишь одной переменной (например, координаты х), т. е. П=П(x). График зависимости потенциальной энергии от некоторого аргумента называется потенциальной кривой. Анализ потенциальных кривых позволяет определить характер движения тела.
Будем рассматривать только консервативные системы, т. е. системы, в которых взаимные превращения механической энергии в другие виды отсутствуют.
Тогда справедлив закон сохранения энергии в форме (13.3). Рассмотрим графическое представление потенциальной энергии для тела в однородном поле тяжести и для упругодеформированного тела.
Потенциальная энергия тела массой т, поднятого на высоту h над поверхностью Земли, согласно (12.7), П(h) = mgh. График данной зависимости П = П(h)— прямая линия, проходящая через начало координат (рис. 15), угол наклона которой к оси h тем больше, чем больше масса тела (так как tga = mg).
Пусть полная энергия тела равна Е (ее график— прямая, параллельная оси h). На высоте h тело обладает потенциальной энергией П, которая определяется отрезком вертикали, заключенным между точкой h на оси абсцисс и графиком П(h). Естественно, что кинетическая энергия Т задается ординатой между графиком П(h) и горизонтальной прямой ЕЕ. Из рис. 15 следует, что если h=hmax, то Т=0 и П = E=mghmax, т. е. потенциальная энергия становится максимальной и равной полной энергии.
Из приведенного графика можно найти скорость тела на высоте h:
T=E-П,
т. е.
mv2/2=mghmax-mgh, откуда
v = Ö2g(hmax-h).
Зависимость потенциальной энергии упругой деформации П=kx2/2 от деформации х имеет вид параболы (рис. 16), где график заданной полной энергии тела Е — прямая, параллельная оси
27
абсцисс х, а значения Т и П определяются так же, как на рис. 15. Из рис. 16 следует, что с возрастанием деформации х потенциальная энергия тела возрастает, а кинетическая — уменьшается. Абсцисса xmax определяет максимально возможную деформацию растяжения тела, а —xmax—максимально возможную деформацию сжатия, тела. Если х=±xmax, то T=0 и П=E = kx2max/2, т. е. потенциальная энергия становится максимальной и равной полной энергии.
Из анализа графика на рис. 16 вытекает, что при полной энергии тела, равной Е, тело не может сместиться правее xmax и левее -xmax, так как кинетическая энергия не может быть отрицательной величиной и, следовательно, потенциальная энергия не может быть больше полной. В таком случае говорят, что тело находится в потенциальной яме с координатами
-xmax£x£xmax.
В общем случае потенциальная кривая может иметь довольно сложный вид, например с несколькими чередующимися максимумами и минимумами (рис.17). Проанализируем эту потенциальную кривую.
Если Е — заданная полная энергия частицы, то частица может находиться только там, где П(х) £E, т.е. в областях I и III. Переходить из области I в III и обратно частица не может, так как ей препятствует потенциальный барьер CDG, ширина которого равна интервалу значений х, при которых E<П, а его высота определяется разностью Пmax-E. Для того чтобы частица смогла преодолеть потенциальный барьер, ей необходимо сообщить дополнительную энергию, равную высоте барьера или превышающую ее. В области 1 частица с полной энергией Е оказывается «запертой» в потенциальной яме ABC и совершает колебания между точками с координатами xa и хC.
В точке В с координатой x0 (рис. 17) потенциальная энергия частицы минимальна. Так как действующая на частицу сила (см. §12) Fх=-дП/дх (П — функция только одной координаты), а условие минимума потенциальной энергии дП/дх=0, то в точке В Fx = 0. При смещении частицы из положения x0 (и влево, и вправо) она испытывает действие возвращающей силы, поэтому положение x0 является положением устойчивого равновесия. Указанные условия выполняются и для точки х'0 (для Пmax). Однако эта точка соответствует положению неустойчивого равновесия, так как при смещении частицы из положения х'0 появляется сила, стремящаяся удалить ее от этого положения.
§ 15. Удар абсолютно упругих и неупругих тел
Примером применения законов сохранения импульса и энергии при решении реальной физической задачи является удар абсолютно упругих и неупругих тел.
Удар (или соударение) — это столкновение двух или более тел, при котором взаимодействие длится очень короткое время. Исходя из данного определения, кроме явлений, которые можно отнести к ударам в прямом смысле этого слова
28
(столкновения атомов или биллиардных шаров), сюда можно отнести и такие, как удар человека о землю при прыжке с трамвая и т. д. При ударе в телах возникают столь значительные внутренние силы, что внешними силами, действующими на них, можно пренебречь. Это позволяет рассматривать соударяющиеся тела как замкнутую систему и применять к ней законы сохранения.
Тела во время удара претерпевают деформацию. Сущность удара заключается в том, что кинетическая энергия относительного движения соударяющихся тел на короткое время преобразуется в энергию упругой деформации. Во время удара имеет место перераспределение энергии между соударяющимися телами. Наблюдения показывают, что относительная скорость тел после удара не достигает своего прежнего значения. Это объясняется тем, что нет идеально упругих тел и идеально гладких поверхностей. Отношение нормальных составляющих относительной скорости тел после и до удара называется коэффициентом восстановления e:
e = v'n/vn.
Если для сталкивающихся тел e=0, то такие тела называются абсолютно неупругими, если e=1—абсолютно упругими.
На практике для всех тел 0<e<1 (например, для стальных шаров e»0,56, для шаров из слоновой кости e»0,89, для свинца e»0). Однако в некоторых случаях тела можно с большой точностью рассматривать либо как абсолютно упругие, либо как абсолютно неупругие.
Прямая, проходящая через точку соприкосновения тел и нормальная к поверхности их соприкосновения, называется линией удара. Удар называется центральным, если тела до удара движутся вдоль прямой, проходящей через их центры масс. Мы будем рассматривать только центральные абсолютно упругие и абсолютно неупругие удары.
Абсолютно упругий удар — столкновение двух тел, в результате которого в обоих взаимодействующих телах не остается никаких деформаций и вся кинетическая энергия, которой обладали тела до удара, после удара снова превращается в кинетическую энергию
.
Для абсолютно упругого удара выполняются закон сохранения импульса и закон сохранения кинетической энергии.
Обозначим скорости шаров массами m1 и m2 до удара через v1 и v2, после удара — через v'1 и v'2 (рис. 18). При прямом центральном ударе векторы скоростей шаров до и после удара лежат на прямой линии, соединяющей их центры. Проекции векторов скорости на эту линию равны модулям скоростей. Их направления учтем знаками: положительное значение припишем движению вправо, отрицательное — движению влево.
При указанных допущениях законы сохранения имеют вид
Произведя соответствующие преобразования в выражениях (15.1) и (15.2), получим
Решая уравнения (15.3) и (15.5), находим
Разберем несколько примеров.
29
Проанализируем выражения (15.8) и (15.9) для двух шаров различных масс:
а) m1 =m2. Если второй шар до удара висел неподвижно (v2=0) (рис. 19), то после удара остановится первый шар (v'1=0), а второй будет двигаться с той же скоростью и в том же направлении, в котором двигался первый шар до удара (v'2 = v1);
б) m1>m2.
Первый шар продолжает двигаться в том же направлении, как и до удара, но с меньшей скоростью (v'1<v1). Скорость второго шара после удара больше, чем скорость первого после удара (v'2>v'1) (рис.20);
в) m1<m2. Направление движения первого шара при ударе изменяется — шар отскакивает обратно. Второй шар движется в ту же сторону, в которую двигался первый шар до удара, но с меньшей скоростью, т.е. v'2<v1 (рис. 21);
г) m2>>m1 (например, столкновение шара со стеной). Из уравнений (15.8) и (15.9) следует, что v'1=-v1, v'2»2m1v1/m2»0.
2) При m1=m2 выражения (15.6) и (15.7) будут иметь вид
v'1=v2, v'2=v1,
т. е. шары равной массы «обмениваются» скоростями.
Абсолютно неупругий удар — столкновение двух тел, в результате которого тела объединяются, двигаясь дальше как единое целое.
Продемонстрировать абсолютно неупругий удар можно с помощью шаров из пластилина (глины), движущихся навстречу друг другу (рис. 22).
Если массы шаров m1 и m2, их скорости до удара v1 и v2, то, используя закон сохранения импульса, можно записать
Если шары движутся навстречу друг другу, то они вместе будут продолжать двигаться в ту сторону, в которую двигался шар, обладающий большим импульсом. В частном случае если массы шаров равны (m1=m2), то
v = (v1+v2)/2.
Выясним, как изменяется кинетическая энергия шаров при центральном абсолютно неупругом ударе. Так как в процессе соударения шаров между ними дей-
30
ствуют силы, зависящие не от самих деформаций, а от их скоростей, то мы имеем дело с силами, подобными силам трения, поэтому закон сохранения механической энергии не должен соблюдаться. Вследствие деформации происходит «потеря» кинетической энергии, перешедшей в тепловую или другие формы энергии. Эту «потерю» можно определить по разности кинетической энергии тел до и после удара:
Если ударяемое тело было первоначально неподвижно (v2=0), то
Когда m2>>m1 (масса неподвижного тела очень большая), то v<<v1 и почти вся кинетическая энергия тела при ударе переходит в другие формы энергии. Поэтому, например, для получения значительной деформации наковальня должна быть массивнее молотка. Наоборот, при забивании гвоздей в стену масса молотка должна быть гораздо большей (m1>>m2), тогда v»v1 и практически вся энергия затрачивается на возможно большее перемещение гвоздя, а не на остаточную деформацию стены.
Абсолютно неупругий удар — пример того, как происходит «потеря» механической энергии под действием диссипативных сил.
Контрольные вопросы
• В чем различие между понятиями энергии и работы?
• Как найти работу переменной силы?
• Какую работу совершает равнодействующая всех сил, приложенных к телу, равномерно движущемуся по окружности?
• Что такое мощность? Вывести ее формулу.
• Дайте
определения и выведите формулы
для известных вам видов
• Почему изменение
потенциальной энергии
• В чем заключается закон сохранения механической энергии? Для каких систем он выполняется?
• Необходимо ли условие замкнутости системы для выполнения закона сохранения механической энергии?
• В чем физическая сущность закона сохранения и превращения энергии? Почему он является фундаментальным законом природы?
• Каким
свойством времени
• Что такое потенциальная яма? потенциальный барьер?
• Какие заключения о характере движения тел можно сделать из анализа потенциальных кривых?
• Как охарактеризовать
положения устойчивого и
• Чем отличается абсолютно упругий удар от абсолютно неупругого?
• Как определить скорости тел после центрального абсолютно упругого удара? Следствием каких законов являются эти выражения?
31
Задачи
3.1. Определить: 1) работу поднятия груза по наклонной плоскости; 2) среднюю и 3) максимальную мощности подъемного устройства, если масса груза 10 кг, длина наклонной плоскости 2 м, угол ее наклона к горизонту 45°, коэффициент трения 0,1 и время подъема 2 с. [1) 170 Дж; 2) 85 Вт; 3) 173 Вт |