Уменьшение шума при взаимодействии колеса и рельса

Автор работы: Пользователь скрыл имя, 22 Ноября 2013 в 15:03, реферат

Краткое описание

Количественные показатели воздействия шума железнодорожного транспорта в большинстве стран остаются по большей части неизменными. Предполагается, что в обозримом будущем состояние дел в этой области останется без изменения. Однако имеются районы, где шум железнодорожного транспорта является основным источником раздражения. Введение в последнее время в эксплуатацию высокоскоростных поездов и скоростных городских линий приводит к расширению зон, подверженных воздействию новых источников шума. Поэтому условия жизни людей могут быть улучшены, если принять серьезные меры по уменьшению шума.

Вложенные файлы: 1 файл

курсовая по физике.docx

— 135.24 Кб (Скачать файл)

Среди разнообразных волн, встречающихся  в природе и технике, выделяются следующие их типы: волны на поверхности жидкости, упругие и электромагнитные волны. Упругими (или механическими) волнами называются механические возмущения, распространяющиеся в упругой среде. Упругие волны бывают продольные и поперечные. В продольных волнах частицы среды колеблются в направлении распространения волны, в поперечных — в плоскостях, перпендикулярных направлению распространения волны.

Продольные  волны могут возбуждаться в средах, в которых возникают упругие  силы при деформации сжатия и растяжения, т. е. твердых, жидких и газообразных телах. Поперечные волны могут возбуждаться в среде, в которой возникают упругие силы при деформации сдвига, т. е. в твердых телах; в жидкостях и газах возникают только продольные волны, а в твердых телах — как продольные, так и поперечные.

Упругая волна называется гармонической, если соответствующие ей колебания частиц среды являются гармоническими. На рис. 220 представлена гармоническая поперечная волна, распространяющаяся со скоростью v вдоль оси х, т. е. приведена зависимость между смещением x частиц среды, участвующих в волновом процессе, и расстоянием х этих частиц (например, частицы В) от источника колебаний О для какого-то фиксированного момента времени t. Приведенный график функции x(x, t) похож на график гармонического колебания, однако они различны по существу. График волны дает зависимость смещения всех частиц среды от расстояния до источника колебаний в данный момент времени, а график колебаний — зависимость смещения данной частицы от времени.

Расстояние  между ближайшими частицами, колеблющимися  в одинаковой фазе, называется длиной волны l (рис. 220). Длина волны равна тому расстоянию, на которое распространяется определенная фаза колебания за период, т. е.

или, учитывая, что T= 1/n, где n — частота колебаний,

Если  рассмотреть волновой процесс подробнее, то ясно, что колеблются не только частицы, расположенные вдоль оси х, а колеблется совокупность частиц, расположенных в некотором объеме, т. е. волна, распространяясь от источника колебаний, охватывает все новые и новые области пространства. Геометрическое место точек, до которых доходят колебания к моменту времени t, называется волновым фронтом. Геометрическое место точек, колеблющихся в одинаковой фазе, называется волновой поверхностью. Волновых поверхностей можно провести бесчисленное множество, а волновой фронт в каждый момент времени — один. Волновой фронт также является волновой поверхностью. Волновые поверхности могут быть любой формы, а в простейшем случае они представляют собой совокупность плоскостей, параллельных друг другу, или совокупность концентрических сфер. Соответственно волна называется плоской или сферической.

§ 154. Уравнение бегущей волны. Фазовая  скорость. Волновое уравнение

Бегущими волнами называются волны, которые переносят в пространстве энергию. Перенос энергии волнами количественно характеризуется вектором плотности потока энергии. Этот вектор для упругих волн называется вектором Умова (по имени русского ученого Н. А. Умова (1846—1915), решившего задачу о распространении энергии в среде). Направление вектора Умова совпадает с направлением переноса энергии, а его модуль равен энергии, переносимой волной за единицу времени через единичную площадку, расположенную перпендикулярно направлению распространения волны.

Для вывода уравнения бегущей волны  — зависимости смещения колеблющейся частицы от координат и времени  — рассмотрим плоскую волну, предполагая, что колебания носят гармонический характер, а ось х совпадает с направлением распространения волны (рис. 220). В данном случае волновые поверхности перпендикулярны оси х, а так как все точки волновой поверхности колеблются одинаково, то смещение x будет зависеть только от x и t, т. е. x = x (x, t).

На  рис. 220 рассмотрим некоторую частицу В среды, находящуюся от источника колебаний О на расстоянии х. Если колебания точек, лежащих в плоскости х=0, описываются функцией                   x(0, t) = A cos wt, то частица В среды колеблется по тому же закону, но ее колебания будут отставать по времени от колебаний источника на t, так как для прохождения волной расстояния х требуется время t = x/v, где v — скорость распространения волны. Тогда уравнение колебаний частиц, лежащих в плоскости х, имеет вид

     (154.1)

откуда  следует, что x(х, t) является не только периодической функцией времени, но и периодической функцией координаты х. Уравнение (154.1) есть уравнение бегущей волны. Если плоская волна распространяется в противоположном направлении, то

В общем случае уравнение плоской волны, распространяющейся вдоль положительного направления оси х в среде, не поглощающей энергию, имеет вид

    (154.2)

где А = const — амплитуда волны, w — циклическая частота, j0 — начальная фаза волны, определяемая в общем случае выбором начал отсчета х и t, [w (t—x/v)+ j0] — фаза плоской волны.

Для характеристики волн используется волновое число

     (154.3)

Учитывая (154.3), уравнению (154.2) можно придать  вид

    (154.4)

Уравнение волны, распространяющейся вдоль отрицательного направления оси х, отличается от (154.4) только знаком члена kx.

Основываясь на формуле Эйлера (140.7), уравнение  плоской волны можно записать в виде

где физический смысл имеет лишь действительная часть (см. § 140). Предположим, что при волновом процессе фаза постоянна, т. е.

     (154.5)

Продифференцировав  выражение (154.5) и сократив на w, получим откуда

      (154.6)

Следовательно, скорость v распространения волны в уравнении (154.6) есть не что иное, как скорость перемещения фазы волны, и ее называют фазовой скоростью.

Повторяя  ход рассуждений для плоской  волны, можно доказать, что уравнение сферической волны — волны, волновые поверхности которой имеют вид концентрических сфер, записывается как

    (154.7)

где r — расстояние от центра волны до рассматриваемой точки среды. В случае сферической волны даже в среде, не поглощающей энергию, амплитуда колебаний не остается постоянной, а убывает с расстоянием по закону 1/r. Уравнение (154.7) справедливо лишь для r, значительно превышающих размеры источника (тогда источник колебаний можно считать точечным).

Из  выражения (154.3) вытекает, что фазовая  скорость

     (154.8)

Если  фазовая скорость воли в среде  зависит от их частоты, то это явление  называют дисперсией волн, а среда, в которой наблюдается дисперсия волн, называется диспергирующей средой.

Распространение волн в однородной изотропной среде в общем случае описывается волновым уравнением — дифференциальным уравнением в частных производных

или

     (154.9)

где v — фазовая скорость, — оператор Лапласа. Решением уравнения (154.9) является уравнение любой волны. Соответствующей подстановкой можно убедиться, что уравнению (154.9) удовлетворяют, в частности, плоская волна (см. (154.2)) и сферическая волна (см. (154.7)). Для плоской волны, распространяющейся вдоль оси х, волновое уравнение имеет вид

     (154.10)

§ 158. Звуковые волны

Звуковыми (или акустическими) волнами называются распространяющиеся в среде упругие волны, обладающие частотами в пределах 16—20 000 Гц. Волны указанных частот, воздействуя на слуховой аппарат человека, вызывают ощущение звука. Волны с n < 16 Гц (инфразвуковые) и n > 20 кГц (ультразвуковые) органами слуха человека не воспринимаются.

Звуковые  волны в газах и жидкостях  могут быть только продольными, так  как эти среды обладают упругостью лишь по отношению к деформациям  сжатия (растяжения). В твердых телах  звуковые волны могут быть как  продольными, так и поперечными, так как твердые тела обладают упругостью по отношению к деформациям  сжатия (растяжения) и сдвига.

Интенсивностью звука (или силой звука) называется величина, определяемая средней по времени энергией, переносимой звуковой волной в единицу времени сквозь единичную площадку, перпендикулярную направлению распространения волны:

Единица интенсивности звука в СИ — ватт на метр в квадрате (Вт/м2).

Чувствительность  человеческого уха различна для  разных частот. Для того чтобы вызвать  звуковое ощущение, волна должна обладать некоторой минимальной интенсивностью, но если эта интенсивность превышает определенный предел, то звук не слышен и вызывает только болевое ощущение. Таким образом, для каждой частоты колебаний существуют наименьшая (порог слышимости) и наибольшая (порог болевого ощущения) интенсивности звука, которые способны вызвать звуковое восприятие. На рис. 223 представлены зависимости порогов слышимости и болевого ощущения от частоты звука. Область, расположенная между этими двумя кривыми, является областью слышимости.

Если  интенсивность звука является величиной, объективно характеризующей волновой процесс, то субъективной характеристикой звука, связанной с его интенсивностью, является громкость звука, зависящая от частоты. Согласно физиологическому закону Вебера — Фехнера, с ростом интенсивности звука громкость возрастает по логарифмическому закону. На этом основании вводят объективную оценку громкости звука по измеренному значению его интенсивности:

где I0 — интенсивность звука на пороге слышимости, принимаемая для всех звуков равной 10–12 Вт/м2. Величина L называется уровнем интенсивности звука и выражается в белах (в честь изобретателя телефона Белла). Обычно пользуются единицами, в 10 раз меньшими, — децибелами (дБ).

Физиологической характеристикой звука является уровень громкости, который выражается в фонах (фон). Громкость для звука в 1000 Гц (частота стандартного чистого тона) равна 1 фон, если его уровень интенсивности равен 1 дБ. Например, шум в вагоне метро при большой скорости соответствует »90 фон, а шепот на расстоянии 1м — »20 фон.

Реальный  звук является наложением гармонических  колебаний с большим набором  частот, т. е. звук обладает акустическим спектром, который может быть сплошным (в некотором интервале присутствуют колебания всех частот) и линейчатым (присутствуют колебания отделенных друг от друга определенных частот).

Звук  характеризуется помимо громкости еще высотой и тембром. Высота звука — качество звука, определяемое человеком субъективно на слух и зависящее от частоты звука. С ростом частоты высота звука увеличивается, т. е. звук становится «выше». Характер акустического спектра и распределения энергии между определенными частотами определяет своеобразие звукового ощущения, называемое тембром звука. Так, различные певцы, берущие одну и ту же ноту, имеют различный акустический спектр, т. е. их голоса имеют различный тембр.

Источником  звука может быть всякое тело, колеблющееся в упругой среде со звуковой частотой (например, в струнных инструментах источником звука является струна, соединенная с корпусом инструмента).

Совершая  колебания, тело вызывает колебания  прилегающих к нему частиц среды  с такой же частотой. Состояние  колебательного движения последовательно  передается к все более удаленным  от тела частицам среды, т. е. в среде  распространяется волна с частотой колебаний, равной частоте ее источника, и с определенной скоростью, зависящей  от плотности и упругих свойств среды. Скорость распространения звуковых волн в газах вычисляется по формуле

      (158.1)

где R — молярная газовая постоянная, М — молярная масса, g=СрV — отношение молярных теплоемкостей газа при постоянных давлении и объеме, Т — термодинамическая температура. Из формулы (158.1) вытекает, что скорость звука в газе не зависит от давления р газа, но возрастает с повышением температуры. Чем больше молярная масса газа, тем меньше в нем скорость звука. Например, при T=273 К скорость звука в воздухе (M=29×10–3 кг/моль) v=331 м/с, в водороде   (M=2×10–3 кг/моль) v=1260 м/с. Выражение (158.1) соответствует опытным данным.

При распространении звука в атмосфере  необходимо учитывать целый ряд  факторов: скорость и направление ветра, влажность воздуха, молекулярную структуру газовой среды, явления преломления и отражения звука на границе двух сред. Кроме того, любая реальная среда обладает вязкостью, поэтому наблюдается затухание звука, т. е. уменьшение его амплитуды и, следовательно, интенсивности звуковой волны по мере ее распространения. Затухание звука обусловлено в значительной мере его поглощением в среде, связанным с необратимым переходом звуковой энергии в другие формы энергии (в основном в тепловую).

Для акустики помещений большое значение имеет реверберация звука — процесс постепенного затухания звука в закрытых помещениях после выключения его источника. Если помещения пустые, то происходит медленное затухание звука и создается «гулкость» помещения. Если звуки затухают быстро (при применении звукопоглощающих материалов), то они воспринимаются приглушенными. Время реверберации — это время, в течение которого интенсивность звука в помещении ослабляется в миллион раз, а его уровень — на 60 дБ. Помещение обладает хорошей акустикой, если время реверберации составляет 0,5—1,5 с.

 

§ 160. Ультразвук и его применение

По  своей природе ультразвук представляет собой упругие волны, и в этом он не отличается от звука (см. § 158). Однако ультразвук, обладая высокими частотами (n>20 кГц) и, следовательно, малыми длинами волн, характеризуется особыми свойствами, что позволяет выделить его в отдельный класс явлений. Из-за малых длин волн ультразвуковые волны, как и свет, могут быть получены в виде строго направленных пучков. Для генерации ультразвука используются в основном два явления. Обратный пьезоэлектрический эффект (см. также § 91) — это возникновение деформации в вырезанной определенным образом кварцевой пластинке (в последнее время вместо кварца применяется титанат бария) под действием электрического поля. Если такую пластинку поместить в высокочастотное переменное поле, то можно вызвать ее вынужденные колебания. При резонансе на собственной частоте пластинки получают большие амплитуды колебаний и, следовательно, большие интенсивности излучаемой ультразвуковой волны. Идея кварцевого ультразвукового генератора принадлежит французскому физику П. Ланжевену (1872—1946).

Магнитострикция — это возникновение деформации в ферромагнетиках под действием магнитного поля. Поместив ферромагнитный стержень (например, из никеля или железа) в быстропеременное магнитное поле, возбуждают его механические колебания, амплитуда которых максимальна в случае резонанса.

Ультразвуки широко используются в технике, например для направленной подводкой сигнализации, обнаружения подводных предметов  и определения глубин (гидролокатор, эхолот). Например, в эхолоте от пьезокварцевого генератора, укрепленного на судне, посылаются направленные ультразвуковые сигналы, которые, достигнув дна, отражаются от него и возвращаются обратно. Зная скорость их распространения в воде и определяя время прохождения (от подачи до возвращения) ультразвукового сигнала, можно вычислить глубину. Прием эха также производится с помощью пьезокварца. Звуковые колебания, дойдя да пьезокварца, вызывают в нем упругие колебания, в результате чего на противоположных поверхностях кварца возникают электрические заряды, которые измеряются.

Информация о работе Уменьшение шума при взаимодействии колеса и рельса