Автор работы: Пользователь скрыл имя, 02 Декабря 2013 в 11:45, реферат
ФИЗИОЛОГИЯ - наука о жизнедеятельности организма как целого, его взаимодействии с внешней средой и динамике жизненных процессов.
В ходе своего развития физиология прошла несколько этапов:
эмпирический, анатомо-функциональный, функциональный. На каждом этапе в изучении физиологического процесса или явления имело место два направления (подхода) - аналитическое и системное.
Рис. 14. Пресинаптическое торможение (схема): Н - нейрон, возбуждаемый афферентными импульсами, приходящими по волокну 1; Т - нейрон, образующий тормозные синапсы на пресинаптических разветвлениях волокна 1; 2 - афферентные волокна, вызывающие активность тормозного нейрона Т.
Поступательное торможение обусловлено включением тормозных нейронов на пути следования возбуждения (рис. 15).
Рис. 15. Схема поступательного
Возвратное торможение осуществляется вставочными тормозными нейронами (клетками Реншоу). Импульсы от мотонейронов, через отходящие от его аксона коллатерали, активируют клетку Реншоу, которая в свою очередь вызывает торможение разрядов данного мотонейрона (рис. 16). Это торможение реализуется за счет тормозных синапсов, образованных клеткой Реншоу на теле активирующего ее мотонейрона. Таким образом, из двух нейронов формируется контур с отрицательной обратной связью, которая дает возможность стабилизировать частоту разряда мотонейрона и подавлять избыточную его активность.
Рис. 16. Схема возвратного торможения. Коллатерали аксона мотонейрона (1) контактируют с телом клетки Реншоу (2), короткий аксон которой, разветвляясь, образует тормозные синапсы на мотонейронах 1 и 3.
Латеральное (боковое) торможение. Вставочные клетки формируют тормозные синапсы на соседних нейронах, блокируя боковые пути распространения возбуждения (рис. 17). В таких случаях возбуждение направляется только по строго определенному пути.
Рис. 17. Схема латерального (бокового) торможения. Т - тормозный нейрон.
Именно латеральное торможение обеспечивает, в основном, системную (направленную) иррадиацию возбуждения в ЦНС.
Реципрокное торможение. Примером реципрокного торможения является торможение центров мышц-антагонистов. Суть этого вида торможения заключается в том, что возбуждение проприорецепторов мышц-сгибателей одновременно активирует мотонейроны данных мышц и вставочные тормозные нейроны (рис. 18). Возбуждение вставочных нейронов приводит к постсинаптическому торможению мотонейронов мышц-разгибателей.
Рис. 18. Схема реципрокного торможения. 1 - четырехглавая мышца бедра; 2 - мышечное веретено; 3 - сухожильный рецептор Гольджи; 4 - рецепторные клетки спиномозгового ганглия; 4а - нервная клетка, воспринимающая импульсы от мышечного веретена; 4б - нервная клетка, воспринимающая имульсы от рецептора Гольджи; 5 - мотонейроны, иннервирующие мышцы-разгибатели; 6 - тормозный промежуточный нейрон; 7 - возбуждающий промежуточный нейрон; 8 - мотонейроны, иннервирующие мышцы-сгибатели; 9 - мышца-сгибатель; 10 - моторные нервные окончания в мышцах; 11 - нервное волокно от сухожильного рецептора Гольджи.
Роль различных отделов ЦНС в формировании мышечного тонуса и фазных движений.
Скелетные мышцы всегда
находятся в состоянии
Источником возбуждений, поддерживающих мышечный тонус, являются проприорецепторы. В скелетных мышцах имеются три вида проприорецепторов:
• мышечные веретена, расположенные среди мышечных волокон;
• сухожильные рецепторы Гольджи, расположенные в сухожилиях;
• пачиниевы тельца, расположенные в фасциях, сухожилиях, связках.
Особое значение в регуляции мышечного тонуса имеют мышечные веретена и сухожильные рецепторы Гольджи.
Мышечные веретена представляют собой небольшие продолговатые образования, напоминающие своим внешним видом прядильные капсулы мышечного веретена находится пучок мышечных волокон, которые называются интрафузальными, т. к. они расположенными внутри веретена в отличие от обычных мышечных волокон, которые называются зкстрафузальными.
Каждое интрафузальное волокно состоит из трех частей:
• его центральная часть
• два периферических участка, которые имеют поперечную исчерченность и обладают способностью сокращаться;
• миотрубки, расположенные между ядерной сумкой и периферическими участками.
Ядерную сумку в виде спирали окружают нервные волокна чувствительного нейрона-первичные рецепторные окончания. В области миотрубок нервные окончания афферентных нейронов гроздевидно ветвятся, образуя вторичные рецепторные окончания.
В мышце мышечное веретено одним
концом прикрепляется к
При снижении тонуса экстрафузального
волокна увеличивается его
Возбуждение от рецепторных окончаний по афферентным волокнам поступает в спинной мозг к мотонейронам, расположенным в передних рогах. Мотонейроны спинного мозга принято подразделять на альфа- и гамма-мотонейроны (так как их аксоны относятся к А-альфа и А-гамма нервным волокнам). Возбуждение от альфа-мотонейронов поступает к экстрафузальным мышечным волокнам, вызывая их сокращение - тонус восстанавливается. Избыточное сокращение экстрафузальных мышечных волокон приводит к растяжению сухожильных рецепторов Гольджи, так как они прикрепляются к мышце последовательно. В них возникает возбуждение, которое поступает к тормозным вставочным нейронам спинного мозга, а от них к альфа-мотонейронам. Активность альфа-мотонейронов при этом снижается, уменьшается импульсация, идущая от них к экстрафузальным мышечным волокнам, тонус несколько снижается.
Рис. 19. Морфологические структуры, обеспечивающие регуляцию мышечного тонуса на спинальном уровне (схема). 1 - интрафузальное волокно, 2 - ядерная сумка с первичными рецепторными окончаниями; 3 - миотрубки с вторичными рецепторными окончаниями; 4 - периферические участки интрафузального волокна; 5 - экстрафузальное мышечное волокно; 6 - сухожильный рецептор Гольджи; 7 - афферентные волокна от первичных и вторичных рецепторных окончаний; 8 - афферентные волокна от сухожильного рецептора Гольджи; 9 - альфа-мотонейрон спинного мозга; 10 - гамма-мотонейрон спинного мозга; 11 - промежуточный (тормозной) нейрон спинного мозга; 12 - эфферентный путь от альфа-мотонейрона к экстрафузальному мышечному волокну, 13 - эфферентный путь от гамма-мотонейрона к периферическим участкам интрафузального волокна; 14 - возбуждение, приходящее из ЦНС к гамма-мотонейронам.
Высокая возбудимость мышечного веретена
поддерживается за счет специального
механизма, который образован
Рассмотренные выше механизмы поддержания мышечного тонуса осуществляются на уровне спинного мозга, поэтому такой тонус называется спинальным или простейшим. Спинальный тонус характеризуется очень слабой выраженностью тонического напряжения. Такой тонус не может обеспечить поддержание позы животного и акт ходьбы, но он достаточен для осуществления простейших спинальных рефлексов.
Перерезка у животного (например, у
кошки) ствола мозга между передними
и задними буграми
Контрактильный тонус имеет рефлекторную природу. Это доказывается тем, что при перерезке передних или задних корешков спинного мозга, иннервирующих конечность, ригидность мускулатуры этой конечности исчезает.
Важную роль в возникновении контрактильного тонуса играет дорсальное вестибулярное ядро продолговатого мозга (ядро Дейтерса), которое возбуждается импульсами от рецепторов вестибулярного аппарата. При раздражении вестибулярного ядра ригидность усиливается, а при его разрушении ригидность уменьшается. Полагают, что это ядро оказывает влияние на ретикулярную формацию продолговатого мозга, которая оказывает неодинаковое влияние на нейроны спинного мозга. Раздражение медиальных отделов ретикулярной формации приводит к торможению рефлексов спинного мозга (тормозящая ретикуло-спинальная система), а раздражение латеральных отделов вызывает активацию нейронов спинного мозга (облегчающая ретикуло-спинальная система).
Ядро Дейтерса продолговатого мозга
оказывает активирующее влияние
на облегчающую ретикуло-
Разрушение красного ядра у интактного животного приводит к развитию гипертонуса мышц-разгибателей, а при его раздражении - к снижению тонуса.
Обнаружены и прямые связи красного ядра и ядра Дейтерса с мотонейронами спинного мозга. Показано, что ядро Дейтерса тормозит мотонейроны мышц-сгибателей и возбуждает мотонейроны мышц-разгибателей. Красное ядро оказывает тормозное влияние на мышцы-разгибатели и активирующее влияние на мышцы-сгибатели. Следовательно, при децеребрации, когда красное ядро отделено от ядра Дейтерса, создаются все условия для повышения тонуса мышц-разгибателей.
На ядро Дейтерса тормозное влияние оказывает и мозжечок. Удаление червячной зоны мозжечка у животного, находящегося в состоянии децеребрационной ригидности, вызывает большее растормаживание ядра Дейтерса и дальнейшее увеличение тонуса разгибателей. Электрическое раздражение червячной зоны, напротив, приводит к уменьшению тонуса этих мышц за счет активации тормозных влияний мозжечка на ядро Дейтерса.
При перерезке головного мозга выше промежуточного мозга у животного возникает особое изменение тонуса - мышцы становятся пластичными (воскоподобными), при этом конечностям можно легко придать любое положение, которое они могут сохранять длительное время. Такое состояние называется пластическим тонусом или восковой ригидностью. Пластический тонус имеет рефлекторное происхождение: после перерезки чувствительных нервов, иннервирующих конечность, все проявления пластического тонуса на этой конечности исчезают.
В возникновении пластического тонуса определенную роль играет черная субстанция среднего мозга. Черная субстанция функционально связана с базальными ганглиями - бледным шаром и полосатым телом. Нейроны черной субстанции синтезируют медиатор дофамин. Аксоны этих нейронов подходят к полосатому телу, которое также содержит дофамин. Повреждение черной субстанции, вызывающее дегенерацию дофаминергических путей к полосатому телу, сопровождаетеся заболеванием - болезнью Паркинсона. Одним из симптомов этой болезни является восковидная ригидность, которая обусловлена, по-видимому, гиперактивностью базальных ганглиев, возникающей при повреждении дофаминергического (вероятно, тормозного) пути, идущего от черной субстанции к полосатому телу.
Кроме того, черная субстанция, по-видимому, оказывает на скелетные мышцы трофическое влияние, подобно симпатической нервной системе. При перерезке выше промежуточного мозга высвобождаются структуры, которые оказывают на черную субстанцию тормозящее влияние. В таких условиях черная субстанция затормаживается и перестает оказывать достаточное трофическое влияние на скелетные мышцы и они становятся пластичными.