Черная дыра по решению Райсснера-Нордстрема для визуализации событий

Автор работы: Пользователь скрыл имя, 27 Сентября 2015 в 21:20, курсовая работа

Краткое описание

Цель работы: построить модель черной дыры по решению Райсснера-Нордстрема для визуализации событий.
Для достижения поставленной в работе цели следует решить следующие задачи:
Выполнить теоретический обзор литературы о физике черных дыр и их строении.
Описать информационную модель черной дыры Райсснера-Нордстрема.
Построить компьютерную модель черной дыры Райсснера-Нордстрема.

Вложенные файлы: 1 файл

Zhoba.docx

— 1.03 Мб (Скачать файл)

Содержание

 

Приложение 41

 

 

 

 

Введение

 

Чёрная дыра – область в пространстве-времени, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света, в том числе кванты самого света. Граница этой области называется горизонтом событий, а её характерный размер – гравитационным радиусом.

Теоретически возможность существования таких областей пространства-времени следует из некоторых точных решений уравнений Эйнштейна, первое[1] из которых было получено Карлом Шварцшильдом в 1915 году. Точный изобретатель термина неизвестен  [2], но само обозначение было популяризовано Джоном Арчибальдом Уилером и впервые публично употреблено в популярной лекции «Наша Вселенная: известное и неизвестное» 29 декабря 1967 года. Ранее подобные астрофизические объекты называли «сколлапсировавшие звёзды» или «коллапсары» (от англ. collapsed stars), а также «застывшие звёзды» (англ. frozen stars).[3]

Актуальность: В литературе, посвященной физике черных дыр описание черных дыр Райсснера-Нордстрема строго формализовано и носит, в основном, теоретический характер. Кроме того, астроном, наблюдающий за небесными телами, никогда не увидит строение заряженной черной дыры. Недостаточная освещенность данного вопроса и, невозможность физического наблюдения заряженных черных дыр, стали основой исследования работы.

Цель работы: построить модель черной дыры по решению Райсснера-Нордстрема для визуализации событий. 

Для достижения поставленной в работе цели следует решить следующие задачи:

  • Выполнить теоретический обзор литературы о физике черных дыр и их  строении.
  • Описать информационную модель черной дыры Райсснера-Нордстрема.
  • Построить компьютерную модель черной дыры Райсснера-Нордстрема.

Гипотеза исследования: заряженная черная дыра существует,  если масса черной дыры больше ее заряда.

Метод исследования: компьютерное моделирование.

Объектом исследования являются черные дыры.

Предметом – структура черной дыры по решению Райсснера-Нордстрема.

Информационной базой послужили учебно-методическая, периодическая и печатная литература российских и зарубежных исследователей физиков и астрофизиков черных дыр. Библиографический список представлен в конце работы.

Структура работы обусловлена поставленными в исследовании задачами и состоит из двух глав. Первая глава посвящена теоретическому обзору физики черных дыр. Во второй главе рассматриваются этапы моделирования черной дыры Райсснера-Нордстрема и результат работы компьютерной модели.

Научная новизна: модель позволяет наблюдать строение черной дыры Райсснера-Нордстрема, изучить ее структуру, исследовать ее параметры и визуально представить результаты моделирования.   

Практическая значимость работы: представлена в виде разработанной модели заряженной черной дыры Райсснера-Нордстрема, что позволит демонстрировать результат работы модели в учебном процессе.

 

 

 

Глава 1. Теоретический обзор представлений о черных дырах

 

1.1 Понятие черной дыры

 

В настоящее время под чёрной дырой принято понимать область в пространстве, гравитационное притяжение которой настолько велико, что покинуть её не могут даже объекты, движущиеся со скоростью света. Граница этой области называется горизонтом событий, а ее радиус (если она сферически симметрична) называют гравитационным радиусом.

Вопрос о реальном существовании чёрных дыр тесно связан с тем, насколько верна теория гравитации, из которой следует их существование. В современной физике стандартной теорией гравитации, лучше всего подтверждённой экспериментально, является общая теория относительности (ОТО), уверенно предсказывающая возможность образования чёрных дыр. Поэтому наблюдательные данные анализируются и интерпретируются, прежде всего, в контексте ОТО, хотя, строго говоря, эта теория не является экспериментально подтверждённой для условий, соответствующих области пространства-времени в непосредственной близости от чёрных дыр звёздных масс (однако хорошо подтверждена в условиях, соответствующих сверхмассивным чёрным дырам),[4]. Поэтому утверждения о непосредственных доказательствах существования чёрных дыр, строго говоря, следует понимать в смысле подтверждения существования астрономических объектов, таких плотных и массивных, а также обладающих некоторыми другими наблюдаемыми свойствами, что их можно интерпретировать как чёрные дыры общей теории относительности [4].

Кроме того, чёрными дырами часто называют объекты, не строго соответствующие данному выше определению, а лишь приближающиеся по своим свойствам к такой чёрной дыре — например, это могут быть коллапсирующие звёзды на поздних стадиях коллапса. В современной астрофизике этому различию не придаётся большого значения [5], так как наблюдательные проявления «почти сколлапсировавшей» («замороженной») звезды и «настоящей» («извечной») чёрной дыры практически одинаковы. Это происходит потому, что отличия физических полей вокруг коллапсара от таковых для «извечной» чёрной дыры уменьшаются по степенным законам с характерным временем порядка гравитационного радиуса, делённого на скорость света [6].

Очень массивная звезда может продолжать сжиматься (коллапсировать) и после стадии пульсара до превращения в таинственный объект, называемый черной дырой.

Если предсказанные теорией черные дыры действительно существуют, то они настолько плотны, что масса, равная солнечной,     сжимается     в     шар поперечником меньше 2,5 км. Сила тяготения такой звезды настолько велика, что, согласно теории относительности Эйнштейна, она засасывает все, что к ней приближается, даже свет. Черную дыру невозможно увидеть, потому что ни свет, ни вещество, никакой другой сигнал не может преодолеть ее тяготение.

Рентгеновский источник Лебедь Х-1, расположенный на расстоянии 8000 св. лет (2500 пк) в созвездии Лебедя,— возможный кандидат в черную дыру. Лебедь Х-1 —это невидимая затменно-двойная звезда (период 5—6 дней). Ее наблюдаемый компонент — голубой сверхгигант, у которого из ночи в ночь наблюдаются изменения в спектре. Рентгеновские лучи, регистрируемые астрономами, возможно, испускаются тогда, когда Лебедь Х-1 своим гравитационным полем засасывает вещество с поверхности рядом расположенной звезды на вращающийся диск, образующийся вокруг черной дыры.

 

 

Рис. 1.1.  Чёрная дыра NGC 300 X-1 в представлении художника.

 

Что произойдет с космическим кораблем, который неудачно приблизится в космосе к черной дыре?

Сильное гравитационное притяжение черной дыры затянет космический   корабль   внутрь,   создавая   разрушительную   силу, которая будет усиливаться по мере падения корабля и, в конце концов, разорвет его на части.

 

1.2 Анализ представлений о черных  дырах.

 

В истории представлений о чёрных дырах условно можно выделить три периода:

Начало первого периода связано с опубликованной в 1784 году работой Джона Мичелла, в которой был изложен расчёт массы для недоступного наблюдению объекта.

Второй период связан с развитием общей теории относительности, стационарное решение уравнений которой было получено Карлом Шварцшильдом в 1915 году.

Публикация в 1975 году работы Стивена Хокинга, в которой он предложил идею об излучении чёрных дыр, начинает третий период. Граница между вторым и третьим периодами довольно условна, поскольку не сразу стали ясны все следствия открытия Хокинга, изучение которых продолжается до сих пор.

Ньютоновская теория тяготения (на которой базировалась первоначальная теория чёрных дыр) не является лоренц-инвариантной,  поэтому она не может быть применена к телам, движущимся с околосветовыми и световой скоростями. Лишённая этого недостатка релятивистская теория тяготения была создана, в основном, Эйнштейном (сформулировавшим её окончательно к концу 1915 года) и получила название общей теории относительности (ОТО), [8].  Именно на ней и основывается современная теория астрофизических чёрных дыр,  [5].

Общая теория относительности предполагает, что гравитационное поле представляет собой проявление искривления пространства-времени (которое, таким образом, оказывается псевдоримановым, а не псевдоевклидовым, как в специальной теории относительности). Связь искривления пространства-времени с характером распределения и движения заключающихся в нём масс даётся основными уравнениями теории — уравнениями Эйнштейна.

Так как чёрные дыры являются локальными и относительно компактными образованиями, то при построении их теории обычно пренебрегают наличием космологической постоянной, так как её эффекты для таких характерных размеров задачи неизмеримо малы. Тогда стационарные решения для чёрных дыр в рамках ОТО, дополненной известными материальными полями, характеризуются только тремя параметрами: массой(M), моментом импульса (L) и электрическим зарядом (Q), которые складываются из соответствующих характеристик вошедших в чёрную дыру при коллапсе и упавших в неё позднее тел и излучений.

Решения уравнений Эйнштейна для чёрных дыр с соответствующими характеристиками (см. Таблица 1.1):

 

Таблица 1.1 Решения уравнений Эйнштейна для чёрных дыр

 

Характеристика черной дыры

Без вращения

Вращается

Без заряда

Решение Шварцшильда

Решение Керра

Заряженная

Решение Райсснера — Нордстрёма

Решение Керра — Ньюмена


 

Решение Шварцшильда (1916 год, Карл Шварцшильд) — статичное решение для сферически-симметричной чёрной дыры без вращения и без электрического заряда.

Решение Райсснера — Нордстрёма (1916 год, Ханс Райсснер (1918 год, Гуннар Нордстрём) — статичное решение сферически-симметричной чёрной дыры с зарядом, но без вращения.

Решение Керра (1963 год, Рой Керр)  — стационарное, осесимметричное решение для вращающейся чёрной дыры, но без заряда.

Решение Керра — Ньюмена (1965 год, Э. Т. Ньюмен, Э. Кауч, К. Чиннапаред, Э. Экстон, Э. Пракаш и Р. Торренс)[12] — наиболее полное на данный момент решение: стационарное и осесимметричное, зависит от всех трёх параметров.

По современным представлениям, есть четыре сценария формирования чёрной дыры:

  1. Гравитационный коллапс достаточно массивной звезды (более чем 3,6 масс Солнца) на конечном этапе её эволюции.
  2. Коллапс центральной части галактики или прагалактического газа. Современные представления помещают огромную чёрную дыру в центр многих, если не всех, спиральных и эллиптических галактик.
  3. Формирование чёрных дыр в момент Большого Взрыва в результате флуктуаций гравитационного поля и/или материи. Такие чёрные дыры называются первичными.
  4. Возникновение чёрных дыр в ядерных реакциях высоких энергий — квантовые чёрные дыры.

Чёрные дыры звёздных масс образуются как конечный этап жизни некоторых звезд. После полного выгорания термоядерного топлива и прекращения реакции звезда теоретически должна начать остывать, что приведёт к уменьшению внутреннего давления и сжатию звезды под действием гравитации. Сжатие может остановиться на определённом этапе, а может перейти в стремительный гравитационный коллапс. В зависимости от массы звезды и вращательного момента возможно превращение ее в черную дыру.

Условия (главным образом, масса), при которых конечным состоянием эволюции звезды является чёрная дыра, изучены недостаточно хорошо, так как для этого необходимо знать поведение и состояния вещества при чрезвычайно высоких плотностях, недоступных экспериментальному изучению. Различные модели дают нижнюю оценку массы чёрной дыры, получающейся в результате гравитационного коллапса, от 2,5 до 5,6 масс Солнца. Радиус чёрной дыры при этом очень мал — несколько десятков километров.

Сверхмассивные чёрные дыры. Разросшиеся очень массивные чёрные дыры, по современным представлениям, образуют ядра большинства галактик. В их число входит и массивная чёрная дыра в ядре нашей Галактики.

Первичные чёрные дыры в настоящее время носят статус гипотезы. Если в начальные моменты жизни Вселенной существовали достаточной величины отклонения от однородности гравитационного поля и плотности материи, то из них путём коллапса могли образовываться чёрные дыры. При этом их масса не ограничена снизу, как при звёздном коллапсе — их масса, вероятно, могла бы быть достаточно малой. Обнаружение первичных чёрных дыр представляет особенный интерес в связи с возможностями изучения явления испарения чёрных дыр.

Квантовые чёрные дыры. Предполагается, что в результате ядерных реакций могут возникать устойчивые микроскопические чёрные дыры, так называемые квантовые чёрные дыры. Для математического описания таких объектов необходима квантовая теория гравитации, которая еще не создана. Однако из общих соображений весьма вероятно, что спектр масс чёрных дыр дискретен и существует минимальная чёрная дыра — планковская чёрная дыра. Её масса порядка 10-5 г, радиус - 10-35 м. Комптоновская длина волны планковской чёрной дыры по порядку величины равна её гравитационному радиусу.

Даже если квантовые дыры существуют, время их существования крайне мало, что делает их непосредственное обнаружение очень проблематичным. В последнее время предложены эксперименты с целью обнаружения свидетельств появления чёрных дыр в ядерных реакциях. Однако для непосредственного синтеза чёрной дыры в ускорителе необходима недостижимая на сегодня энергия 1026 эВ. По-видимому, в реакциях сверхвысоких энергий могут возникать виртуальные промежуточные чёрные дыры. Однако по теории струн энергии требуется гораздо меньше и синтез можно осуществить.

Информация о работе Черная дыра по решению Райсснера-Нордстрема для визуализации событий