Черная дыра по решению Райсснера-Нордстрема для визуализации событий

Автор работы: Пользователь скрыл имя, 27 Сентября 2015 в 21:20, курсовая работа

Краткое описание

Цель работы: построить модель черной дыры по решению Райсснера-Нордстрема для визуализации событий.
Для достижения поставленной в работе цели следует решить следующие задачи:
Выполнить теоретический обзор литературы о физике черных дыр и их строении.
Описать информационную модель черной дыры Райсснера-Нордстрема.
Построить компьютерную модель черной дыры Райсснера-Нордстрема.

Вложенные файлы: 1 файл

Zhoba.docx

— 1.03 Мб (Скачать файл)

 

1.3. Черные дыры с электрическим зарядом Райсснера-Нордстрема

 

Во время первой мировой войны Г. Райснер и Г. Нордстрём открыли решение эйнштейновских уравнений гравитационного поля, полностью описывающее "заряженную" черную дыру. У такой черной дыры может быть электрический заряд (положительный или отрицательный) или магнитный заряд (соответствующий северному или южному магнитному полюсу). Если электрически заряженные тела - дело обычное, то магнитно заряженные - вовсе нет. Тела, у которых есть магнитное поле (например, обычный магнит, стрелка компаса, Земля), обладают обязательно и северным и южными полюсами сразу. До самого последнего времени большинство физиков считали, что магнитные полюсы всегда встречаются только парами. Однако в 1975 г. группа ученых из Беркли и Хьюстона объявила, что в ходе одного из экспериментов ими открыт магнитный монополь. Если эти результаты подтвердятся, то окажется, что могут существовать и отдельные магнитные заряды, т.е. что северный магнитный полюс может существовать отдельно от южного, и обратно. Решение Райснера-Нордстрёма допускает возможность существования у черной дыры магнитного поля монополя. Независимо от того, как черная дыра приобрела свой заряд, все свойства этого заряда в решении Райснера-Нордстрёма объединяются в одну характеристику - число Q. Эта особенность аналогична тому факту, что решение Шварцшильда не зависит от того, каким образом черная дыра приобрела свою массу. Ее могли составить слоны, камни или звезды - конечный результат будет всегда одним и тем же. При этом геометрия пространства-времени в решении Райснера-Нордстрёма не зависит от природы заряда. Он может быть положительным, отрицательным, соответствовать северному магнитному полюсу или южному - важно лишь его полное значение, которое можно записать как |Q|. Итак, свойства черной дыры Райснера-Нордстрёма зависят лишь от двух параметров - полной массы дыры М и ее полного заряда |Q| (иными словами, от его абсолютной величины). Размышляя о реальных черных дырах, которые могли бы реально существовать в нашей Вселённой, физики пришли к заключению, что решение Райснера-Нордстрёма оказывается не очень существенным, ибо электромагнитные силы намного больше сил тяготения. Например, электрическое поле электрона или протона в триллионы триллионов раз сильнее их гравитационного поля. Это значит, что если у черной дыры был бы достаточно большой заряд, то огромные силы электромагнитного происхождения быстро разбросали бы во все стороны газ и атомы, "плавающие" в космосе. В самое короткое время частицы, имеющие такой же знак заряда, как и черная дыра, испытали бы мощное отталкивание, а частицы с противоположным знаком заряда - столь же мощное притяжение к ней. Притягивая частицы с зарядом противоположного знака, черная дыра вскоре стала бы электрически нейтральной. Поэтому можно полагать, что реальные черные дыры обладают зарядом лишь малой величины. Для реальных черных дыр значение |Q| должно быть гораздо меньше, чем М. В самом деле, из расчетов следует, что черные дыры, которые могли бы реально существовать в космосе, должны иметь массу М по крайней мере в миллиард миллиардов раз большую, чем величина |Q|. Математически это выражается неравенством

Несмотря на эти, увы, прискорбные ограничения, налагаемые законами физики, весьма поучительно провести подробный анализ решения Райснера-Нордстрёма.

Чтобы проще подойти к пониманию особенностей решения Райснера-Нордстрёма, рассмотрим обычную черную дыру без заряда. Как следует из решения Шварцшильда, такая дыра состоит из сингулярности, окруженной горизонтом событий. Сингулярность расположена в центре дыры (при r = 0), а горизонт событий - на расстоянии 1 шварцшильдовского радиуса (именно при r = 2М). Теперь представим себе, что мы придали этой черной дыре небольшой электрический заряд. Как только у дыры появился заряд, мы должны обратиться к решению Райснера-Нордстрёма для геометрии пространства-времени. В решении Райснера-Нордстрёма имеются два горизонта событий. Именно, с точки зрения удаленного наблюдателя, существуют два положения на разных расстояниях от сингулярности, где время останавливает свой бег. При самом ничтожном заряде горизонт событий, находившийся ранее на "высоте" 1 шварцшильдовского радиуса, сдвигается немножко ниже к сингулярности. Но еще более удивительно то, что сразу же вблизи сингулярности возникает второй горизонт событий. Таким образом сингулярность в заряженной черной дыре окружена двумя горизонтами событий - внешним и внутренним. Структуры незаряженной (шварцшильдовской) черной дыры и заряженной черной дыры Райснера-Нордстрёма (при М>>|Q|) сопоставлены на рис. 1.2.

Если мы будем увеличивать заряд черной дыры, то внешний горизонт событий станет сжиматься, а внутренний - расширяться. Наконец, когда заряд черной дыры достигнет значения, при котором выполняется равенство М=|Q|, оба горизонта сливаются друг с другом. Если увеличить заряд еще больше, то горизонт событий полностью исчезнет, и остается "голая" сингулярность. При М<|Q| горизонты событий отсутствуют, так что сингулярность открывается прямо во внешнюю Вселенную. Такая картина нарушает знаменитое "правило космической этики", предложенное Роджером Пенроузом. Это правило ("нельзя обнажать сингулярность!") будет подробнее обсуждаться ниже. Последовательность схем на рис. 1.3 иллюстрирует расположение горизонтов событий у черных дыр, имеющих одну и ту же массу, но разные значения заряда.

 

 

Рис. 1.2. Заряженные и нейтральные черные дыры. Добавление хотя бы ничтожного по величине заряда приводит к появлению второго (внутреннего) горизонта событий прямо над сингулярностью.

 

Знаем что рис. 1.3 иллюстрирует положение горизонтов событий относительно сингулярности черных дыр в пространстве, но еще полезнее проанализировать диаграммы пространства-времени для заряженных черных дыр. Чтобы построить такие диаграммы - графики зависимости времени от расстояния, мы начнем с "прямолинейного" подхода.


 

Рис. 1.3. Изображение заряженных черных дыр в пространстве. По мере добавления заряда в черную дыру внешний горизонт событий постепенно сжимается, а внутренний - расширяется. Когда полный заряд дыры достигает значения |Q|= М, оба горизонта сливаются в один. При еще больших значениях заряда горизонт событий вообще исчезает и остается открытая, или "голая", сингулярность.


Измеряемое наружу от сингулярности расстояние откладывается по горизонтали, а время, как обычно, - по вертикали. На такой диаграмме левая часть графика всегда ограничивается сингулярностью, описываемой линией, идущей вертикально от удаленного прошлого к далекому будущему. Мировые линии горизонтов событий также представляют собой вертикали и отделяют внешнюю Вселенную от внутренних областей черной дыры.

На рис. 1.4 показаны диаграммы пространства-времени для нескольких черных дыр, имеющих одинаковые массы, но разные заряды. Вверху для сравнения приведена диаграмма для шварцшильдовской черной дыры (вспомним, что решение Шварцшильда - это то же, что решение Райснера-Нордстрёма при |Q|=0). Если этой дыре добавить совсем небольшой заряд, то второй (внутренний) горизонт будет расположен непосредственно вблизи сингулярности. Для черной дыры с зарядом умеренной величины (М > |Q|) внутренний горизонт расположен дальше от сингулярности, а внешний уменьшил свою высоту над сингулярностью. При очень большом заряде (М=|Q|;в этом случае говорят о предельном решении Райснера-Нордстрёма) оба горизонта событий сливаются воедино. Наконец, когда заряд исключительно велик (М < |Q|), горизонты событий просто исчезают.

 

Рис. 1.4. Диаграммы пространства-времени для заряженных черных дыр. Эта последовательность диаграмм иллюстрирует вид пространства-времени для черных дыр, имеющих одинаковую массу, но разные заряды. Вверху для сравнения приведена диаграмма для шварцшильдовской черной дыры (|Q|=0).


 

 

Рис. 1.5. "Голая" сингулярность. Черную дыру, заряд которой чудовищно (М<|Q|), вообще не окружает горизонт событий. Вопреки "закону космической этики" сингулярность красуется на виду у всей внешней Вселенной.




 

Как видно из рис. 1.5, при отсутствии горизонтов сингулярность открывается прямо во внешнюю Вселенную. Удаленный наблюдатель может видеть эту сингулярность, а космонавт может влететь прямо в область сколь угодно сильно искривленного пространства-времени, не пересекая никаких горизонтов событий. Подробный расчет показывает, что непосредственно рядом с сингулярностью тяготение начинает действовать как отталкивание. Хотя черная дыра и притягивает к себе космонавта, пока тот находится достаточно далеко от нее, но стоит ему приблизиться к сингулярности на очень малое расстояние, и он подвергнется отталкиванию. Полной противоположностью случая решения Шварцшильда является область пространства непосредственно около сингулярности Райснера-Нордстрёма - это царство антигравитации.

Неожиданности решения Райснера-Нордстрёма не исчерпываются двумя горизонтами событий и гравитационным отталкиванием вблизи сингулярности. Вспоминая сделанный выше подробный анализ решения Шварцшильда, можно думать, что диаграммы типа изображенных на рис. 1.4 описывают далеко не все стороны картины. Так, в геометрии Шварцшильда мы столкнулись с большими трудностями, вызванными наложением друг на друга в упрощенной диаграмме разных областей пространства-времени (см. рис. 1.9). Такие же трудности ждут нас и в диаграммах типа рис. 1.4, так что пора перейти к их выявлению и преодолению.

Легче понять глобальную структуру пространства-времени, применяя следующие элементарные правила. Диаграмма, именуемая диаграммой Пенроуза, изображена на рис. 1.6,а.

 

Рис. 1.6,а. Диаграмма Пенроуза для шварцшильдовской черной дыры.  Здесь можно видеть и наиболее удаленные окраины двух Вселенных (I -, 

, I0, 
 и I+ для каждой из них).


 

Она может быть названа и диаграммой Пенроуза для частного случая черной дыры Райснера-Нордстрёма, когда заряд отсутствует (|Q|=0). Более того, если мы лишим дыру Райснера-Нордстрёма заряда (т.е. перейдем к пределу |Q|->0), то наша диаграмма (какой бы она ни была) обязательно сведется в пределе к диаграмме Пенроуза для решения Шварцшильда. Отсюда следует наше первое правило: должна существовать другая Вселенная, противоположная нашей, достижение которой возможно лишь по запрещенным пространственноподобным линиям.

При построении диаграммы Пенроуза для заряженной черной дыры появляются основания ожидать существования множества Вселенных. У каждой из них должно быть пять типов бесконечностей ( ,  ,  ,   и ).

Это I - - временноподобная бесконечность в прошлом. Она является тем "местом", откуда произошли все материальные объекты (Боря, Вася, Маша, Земля, галактики и все прочее). Все такие объекты движутся по временноподобным мировым линиям и должны уйти в I+ - временноподобную бесконечность будущего, куда-то в миллиарды лет после "теперь". Кроме того, имеется I0- пространственноподобная бесконечность, и так как ничто не может двигаться быстрее света, то ничто не может никогда попасть в I0. Если быстрее света не движется никакой из известных физике объектов, то фотоны движутся в точности со скоростью света по мировым линиям, наклоненным на 45 градусов на диаграмме пространства-времени. Это дает возможность ввести  - световую бесконечность прошлого, откуда приходят все световые лучи. Существует, наконец, и   - световая бесконечность будущего (куда уходят все 'световые лучи).

Кроме того, каждая из этих внешних Вселенных должна изображаться в виде треугольника, так как метод конформного отображения Пенроуза работает в данном случае как бригада маленьких бульдозеров, "сгребающих" все пространство-время в один компактный треугольник. Поэтому нашим вторым правилом будет следующее: любая внешняя Вселенная должна представляться в виде треугольника, обладающего пятью типами бесконечностей. Такая внешняя Вселенная может быть ориентирована либо направо (как на рис. 1.6,б), либо налево.

 

 

Рис. 1.6,б. Внешняя Вселенная. На диаграмме Пенроуза для любой черной дыры внешняя Вселенная всегда изображается треугольником с пятью бесконечностями (I', S~, I0,S+, I+). Такая внешняя Вселенная может быть ориентирована углом направо (как изображено на рисунке) или налево.



Чтобы прийти к третьему правилу, напомним, что на диаграмме Пенроуза (см. рис. 1.6,а) горизонт событий шварцшильдовской черной дыры имел наклон 45градусов. Итак, третье правило: любой горизонт событий должен быть светоподобен, и поэтому всегда имеет наклон 45градусов.

Для вывода четвертого (и последнего) правила вспомним, что при переходе через горизонт событий пространство и время менялись ролями в случае шварцшильдовской черной дыры. Из подробного анализа пространственноподобных и временноподобных направлений для заряженной черной дыры следует, что и здесь получится та же картина. Отсюда четвертое правило: пространство и время меняются ролями всякий раз, когда пересекается горизонт событий.

На рис. 1.7 только что сформулированное четвертое правило проиллюстрировано для случая черной дыры с малым или умеренным зарядом (М>|Q|). Вдали от такой заряженной черной дыры пространственноподобное направление параллельно пространственной оси, а временноподобное - параллельно временной оси. Пройдя под внешний горизонт событий, мы обнаружим смену ролей этих двух направлений - пространственноподобное направление теперь стало параллельно оси времени, а временноподобное - параллельно пространственной оси. Однако, продолжая движение к центру и опустившись под внутренний горизонт событий, мы становимся свидетелями второй смены ролей. Вблизи сингулярности ориентация пространственноподобного и временнеподобного направлений становится такой же, какой она была вдали от черной дыры.

 

 

Рис. 1.7. Смена ролей пространства и времени (для М>|Q|). Всякий раз при пересечении горизонта событий пространство и время меняются ролями. Это значит, что в заряженной черной дыре из-за наличия двух горизонтов событий полная смена ролей у пространства и времени происходит дважды.

Информация о работе Черная дыра по решению Райсснера-Нордстрема для визуализации событий