Гормоны как регуляторы активности ферментов

Автор работы: Пользователь скрыл имя, 22 Ноября 2012 в 22:54, реферат

Краткое описание

Гормоны (др.-греч. ὁρμάω — возбуждаю, побуждаю) — биологически активные вещества органической природы, вырабатывающиеся в специализированных клетках желёз внутренней секреции, поступающие в кровь и оказывающие регулирующее влияние на обмен веществ и физиологические функции. Гормоны служат гуморальными (переносимыми с кровью) регуляторами определённых процессов в различных органах и системах.

Содержание

1. Что такое гормоны?
2.Номенклатура и классификация гормонов
3. Возможные уровни регулирующего действия гормонов.
4. Механизм действия не проникающих в клетку гормонов.
5. Цитозольный механизм действия гормонов.
6. Нарушения метаболических процессов при недостатке или избытке некоторых гормонов.
7. Список используемой литературы

Вложенные файлы: 1 файл

Гормоны как регуляторы активности ферментов.docx

— 120.78 Кб (Скачать файл)

Государственное бюджетное  образовательное учреждение  высшего  профессионального образования  «Саратовский государственный медицинский  университет имени В. И. Разумовского Министерства здравоохранения и  социального развития

Российской Федерации»

 

Заведующий  кафедрой

биологической химии: 
доктор медицинских наук,  
профессор В.Б. Бородулин 
Преподаватель: 
кандидат биологических наук, 
доцент 
Н. Ю. Русецкая

 

 

Реферат

по биологической химии 

на тему: «Гормоны как регуляторы активности ферментов»

 

 

 

 

Выполнила: 
студентка

2 курса педиатрического факультета 

5 группы 

Аракелова Валерия Геннадьевна

 

 

Саратов 2012

Содержание. 

1. Что такое гормоны? 

2.Номенклатура и классификация гормонов

3. Возможные уровни регулирующего  действия гормонов.

4. Механизм действия не  проникающих в клетку гормонов. 

5. Цитозольный механизм действия гормонов. 

6. Нарушения метаболических  процессов при недостатке или  избытке некоторых гормонов.

7. Список используемой литературы

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Что такое гомоны?

Гормоны (др.-греч. ὁρμάω — возбуждаю, побуждаю) — биологически активные вещества органической природы, вырабатывающиеся в специализированных клетках желёз внутренней секреции, поступающие в кровь и оказывающие регулирующее влияние на обмен веществ и физиологические функции. Гормоны служат гуморальными (переносимыми с кровью) регуляторами определённых процессов в различных органах и системах.

 

Номенклатура  и классификация гормонов

Химическая природа почти всех известных гормонов выяснена в деталях (включая первичную структуру белковых и пептидных гормонов), однако до настоящего времени не разработаны общие принципы их номенклатуры. Химические наименования многих гормонов точно отражают их химическую структуру и очень громоздкие. Поэтому чаще применяются тривиальные названия гормонов. Принятая номенклатура указывает на источник гормона (например, инсулин – от лат. insula – островок) или отражает его функцию (например, пролактин, вазопрессин). Для некоторых гормонов гипофиза(например, лютеинизирующего и фолликулостимулирующего), а также для всех гипоталамических гормонов разработаны новые рабочие названия.

Аналогичное положение существует и в отношении классификации гормонов. Гормоны классифицируют в зависимости от места их природного синтеза, в соответствии с которым различают гормоны гипоталамуса, гипофиза, щитовидной железы, надпочечников, поджелудочной железы, половых желез, зобной железы и др. Однако подобная анатомическая классификация недостаточно совершенна, поскольку некоторые гормоны или синтезируются не в тех железах внутренней секреции, из которых они секретируются в кровь (например, гормоны задней доли гипофиза, вазопрессин и окситоцин синтезируются в гипоталамусе, откуда переносятся в заднюю долю гипофиза), или синтезируются и в других железах (например, частичный синтез половых гормонов осуществляется в коре надпочечников, синтез простагландинов происходит не только в предстательной железе, но и в других органах) и т.д. С учетом этих обстоятельств были предприняты попытки создания современной классификации гормонов, основанной на их химической природе. В соответствии с этой классификацией различают три группы истинных гормонов: 1) пептидные и белковые гормоны, 2) гормоны – производные аминокислот и 3) гормоны стероидной природы. Четвертую группу составляют эйкозаноиды – гормоноподобные вещества, оказывающие местное действие.

Пептидные и белковые гормоны включают от 3 до 250 и более аминокислотных остатков. Это гормоны гипоталамуса и гипофиза (тиролиберин,соматолиберин, соматостатин, гормон роста, кортикотропин, тиреотропин и др.), а также гормоны поджелудочной железы (инсулин, глюкагон). Гормоны – производные аминокислот в основном представлены производными аминокислоты тирозина. Это низкомолекулярные соединения адреналин и норадреналин, синтезирующиеся в мозговом веществе надпочечников, и гормоны щитовидной железы (тироксин и его производные). Гормоны 1-й и 2-й групп хорошо растворимы в воде.

Гормоны стероидной природы представлены жирорастворимыми гормонами коркового вещества надпочечников (кортикостероиды), половыми гормонами (эстрогены и андрогены), а также гормональной формой витамина D.

Эйкозаноиды, являющиеся производными полиненасыщенной жирной кислоты (арахидоновой), представлены тремя подклассами соединений: простагландины, тромбоксаны и лейкотриены. Эти нерастворимые в воде и нестабильные соединения оказывают свое действие на клетки, находящиеся вблизи их места синтеза.

 

Возможные уровни регулирующего действия гормонов.

Биологическое действие гормонов проявляется через их взаимодействие с клетками, имеющими рецепторы к данному гормону (клетками-мишенями). Для проявления биологической активности связывание гормона с рецептором должно приводить к образованию химического сигнала внутри клетки, который вызывает специфический биологический ответ, например, изменение скорости синтеза ферментов и других белков или изменение их активности . Мишенью для гормона могут служить клетки одной или нескольких тканей. Воздействуя на клетку-мишень, гормон вызывает специфическую ответную реакцию, проявление которой зависит от того, какие метаболические пути активируются или тормозятся в этой клетке. Например, щитовидная железа - специфическая мишень для тиреотропина, под действием которого увеличивается количество ацинарных клеток щитовидной железы, повышается скорость биосинтеза тиреоидных гормонов. Глюкагон, воздействуя на адипоциты, активирует липолиз, в печени стимулирует мобилизацию гликогена и глюконеогенез.

Рецепторы гормонов могут быть расположены или в плазматической мембране или внутри клетки (в цитозоле или ядре).

Пути действия гормонов рассматриваются в виде двух альтернативных возможностей:

1) действия гормона с поверхности  клеточной мембраны после связывания со специфическим мембранным рецептором и запуска тем самым цепочки биохимических превращений в мембране и цитоплазме (эффекты пептидных гормонов и катехоламинов);

2) действия гормона путем проникновения  через мембрану и связывания с рецептором цитоплазмы, после чего гормон-рецепторный комплекс проникает в ядро и органоиды клетки, где и реализует свой регуляторный эффект (стероидные гормоны, гормоны щитовидной железы).

Считается, что функция  распознавания предназначенного определенным клеткам специфического гормонального сигнала у всех клеток для всех гормонов осуществляется мембранным рецептором, а после связывания гормона с соответствующим ему рецептором, дальнейшая роль гормон- рецепторного комплекса для  пептидных  и  стероидных  гормонов  различна.

У пептидных, белковых гормонов и катехоламинов гормон-рецепторный комплекс приводит к активации мембранных ферментов и образованию различных вторичных посредников гормонального регуляторного эффекта, реализующих свое действие в цитоплазме, органоидах и ядре клетки.

Известны  четыре системы вторичных посредников: 
1) аденилатциклаза — циклический аденозинмонофосфат (цАМФ);

2) гуанилатциклаза — циклический гуанозинмонофосфат (цГМФ);

3) фосфолипаза С — инозитолтрифосфат (ИФз);

4) ионизированный  кальций

Механизм действия не проникающих  в клетку гормонов (белковых гормонов, катехоламинов, серотонина, гистамина).

Эти гормоны взаимодействуют с рецепторами, расположенными на поверхности клетки, а конечный эффект действия этих гормонов может быть — сокращение, усиление ферментных процессов, например, гликогенолиз, повышение синтеза белка, повышение секреции и т.д. Во всех этих случаях лежит процесс фосфорилювания белков-регуляторов, перенос фосфатных групп от АТФ до гидроксильных групп серина, треонина, тирозина, белка. Этот процесс внутри клетки осуществляется при участии ферментов-протеинкиназы. Протеинкиназы — это АТФ-фосфотрансферазы. Их много разновидностей, для каждого белка — своя протеинкиназа. Например, для фосфорилазы, участвующей в расщеплении гликогена, протеинкиназа называется «киназа фосфорилазы».

В клетке протеинкиназы находятся в неактивном состоянии. Активация протеинкиназы осуществляется за счет гормонов, действующих на поверхностно расположенные рецепторы. При этом сигнал от рецептора (после взаимодействия гормона с этим рецептором) в протеинкиназы передается при участии специфического посредника, или вторичного мессенджера. В настоящее время выяснено, что таким мессенджером могут быть: а) ц-АМФ, б) ионы Са, в) диацилглицерин, г) какие-то другие факторы (вторичные посредники неизвестной природы). Таким образом, протеинкиназы могут быть ц-АМФ-зависимые, Са-зависимые, диацилглицерин-зависимые.

Известно, что в качестве вторичного посредника ц-АМФ выступает при действии таких гормонов как АКТГ, ТТГ, ФСГ, ЛГ, хорионический гонадотропин, МСГ, АДГ, катехоламины (бета-адренорецепторного эффект), глюкагон, паратирин (паратгормон), кальцитонин, секретин, гонадотропин, тиролиберин, липотропин.

Группа  гормонов, для которых мессенджером является кальций: окситоцин, вазопрессин, гастрин, холецистокинин, ангиотензин, катехоламины (альфа-эффект).

Для некоторых гормонов пока не идентифицированы посредники: например, СТГ, пролактин, хорионический соматомамматропин (плацентарный лактоген), соматостатин, инсулин, инсулиноподобный фактор роста и т.п.

Рассмотрим работу ц-АМФ как мессенджера: ц-АМФ (циклического аденозинмонофосфата) образуется в клетке под влиянием фермента аденилатциклазы из молекул АТФ, АТФ — ц-АМФ. Уровень ц-АМФ в клетке зависит от активности аденилатциклазы и от активности фермента, который разрушает ц-АМФ (фосфодиэстеразы). Гормоны, которые действуют за счет ц-АМФ, как правило, вызывают изменение активности аденилатциклазы. Этот фермент имеет регуляторную и каталитическую субъединицы. Регуляторная субъединица тем или иным способом связана с гормональным рецептором, например, за счет G-белка.*

*Роль G-белка в механизмах гормонрецепторного взаимодействия. История изучения G-белков началась в 70-х годах, когда Rodbell et al.показали, что ГТФ увеличивает активацию аденилатциклазы мембран гепатоцитов глюкогоном. С тех пор уже выявлено свыше десятка различных , сопряженных с рецепторами ГТФ-связующих белков, выявлено, что есть G-белки, ингибирующие аденилатциклазу, G-белки, регулирующие фосфоли-пазу С, фосфолипазу А2, ионные каналы. На цитоплазматической поверхности также присутствуют два класса гуаниннуклеотидсвязывающих регулирующих белков. По действию  выделяют G s- белки -стимуляторы и  G i - белки- ингибиторы , причем для того, чтобы стимулировать или ингибировать G -белок должен быть связан с ГТФ, но те и другие ингибированы , если G -белок связан с ГДФ. 

При воздействии гормона происходит активация регуляторной субъединицы (в «покое» эта субъединица связана с гуанизиндифосфатом, а под влиянием гормона она связывается с гуанизинтрифосфатом и поэтому активируется). В результате повышается активность каталитической субъединицы, которая расположена на внутренней стороне плазматической мембраны, и поэтому повышается содержание ц-АМФ. Это, в свою очередь, вызывает активацию протеинкиназы (точнее, ц-АМФ-зависимой протеинкиназы), в дальнейшем вызывает фосфорилирование, которое приводит к конечному физиологического эффекта, например, под влиянием АКТГ клетки надпочечников производят в больших количествах глюкокортикоиды, а под влиянием адреналина в ГМК, содержащие бета-адренорецепторов, происходит активация кальциевого насоса и расслабления ГМК.

Итак: гормон + рецептор — активация аденилатциклазы — активация протеинкиназы — фосфорилирования белка (например, АТФ-азы).


 

 

 

 

 

 

 

 

 

 

 

 

Мессенджер — ионы кальция. Под влиянием гормонов (например, окситоцина, АДГ, гастрина) происходит изменение содержания в клетке ионов кальция. Это может происходить за счет повышения проницаемости мембраны клетки для ионов или кальция за счет освобождения свободных ионов кальция из внутриклеточных депо. В дальнейшем кальций может вызвать ряд процессов, например, повышение проницаемости мембраны для ионов кальция, натрия, может взаимодействовать с микротубулярноворсинчатою системой клетки и, наконец, может вызвать активацию протеинкиназы, зависимых от ионов кальция. Процесс активации протеинкиназы связан прежде всего с взаимодействием ионов кальция с регуляторным белком клетки — кальмодулином. Это высокочувствительный к кальцию белок (например тропонина С в мышцах), что содержит 148 аминокислот, имеет 4 места связывания кальция. Все ядерные клетки имеют в своем составе этот универсальный кальцийеднальний белок. В условиях «покоя» кальмодулин находится в неактивном состоянии и поэтому не способен осуществлять свое регулирующее воздействие на ферменты, в том числе на протеинкиназы. В присутствии кальция происходит активация кальмодулина, в результате чего активируются протеинкиназы, а в дальнейшем происходит фосфорилирования белков. Например, при взаимодействии адреналина с адренорецепторами (бета-Ар) в клетках печени происходит активация гликогенолиза (расщепление гликогена до глюкозы). Этот процесс начинается под влиянием фосфорилазы А, что в клетке находится в неактивном состоянии. Цикл событий здесь такой: адреналин + бета-АР — повышение внутриклеточной концентрации кальция — активация кальмодулин — активация киназы фосфорилазы (активация протеинкиназы) — активация фосфорилазы В, превращение ее в активную форму — фосфорилазу А — начало гликогенолиза.


В случае, когда имеет место другой процесс, последовательность событий  такова: гормон + рецептор — повышение  уровня кальция в клетке — активация  кальмодулин — активация протеинкиназы — фосфорилирования белка-регулятора — физиологический акт.


 

 

 

 

 

 

 

 

 

Мессенджер-диацилглицерин. В мембранах клетки являются фосфолипиды, в частности фосфатидилинозитол — 4,5-бифосфат. При взаимодействии гормона с рецептором это фосфолипид разрывается на два осколка: диацилглицерин и инозитолтрифосфат. Эти осколки являются мессенджерами. В частности, диацилглицерин дальнейшем активирует протеинкиназу, что приводит к фосфорилирования белков клетки и соответствующего физиологического эффекта.

Информация о работе Гормоны как регуляторы активности ферментов