Автор работы: Пользователь скрыл имя, 26 Июня 2014 в 20:46, реферат
Термин “полимерия” был введен в науку И. Берцелиусом в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры) , имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Такое содержание термина не соответствовало современным представлениям о полимерах. “Истинные” синтетические полимеры к тому времени еще не были известны.
Ряд полимеров был, по-видимому, получен еще в первой половине 19 века. Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к “осмолению” продуктов основной химической реакции, т.е., собственно, к образованию полимеров (до сих пор полимеры часто называют “смолами” ) . Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол) .
Историческая справка 3
Введение 4
Представители полимеров 5
Использование полимеров в сельском хозяйстве 7
Заключение 11
Список литературы 12
Содержание:
Историческая справка
Термин “полимерия” был введен в науку И. Берцелиусом в 1833 для обозначения особого вида изомерии, при которой вещества (полимеры) , имеющие одинаковый состав, обладают различной молекулярной массой, например этилен и бутилен, кислород и озон. Такое содержание термина не соответствовало современным представлениям о полимерах. “Истинные” синтетические полимеры к тому времени еще не были известны.
Ряд полимеров был, по-видимому, получен еще в первой половине 19 века. Однако химики тогда обычно пытались подавить полимеризацию и поликонденсацию, которые вели к “осмолению” продуктов основной химической реакции, т.е., собственно, к образованию полимеров (до сих пор полимеры часто называют “смолами” ) . Первые упоминания о синтетических полимерах относятся к 1838 (поливинилиденхлорид) и 1839 (полистирол) .
Химия полимеров возникла только в связи с созданием А. М. Бутлеровым теории химического строения. А. М. Бутлеров изучал связь между строением и относительной устойчивостью молекул, проявляющейся в реакциях полимеризации. Дальнейшее свое развитие наука о полимерах получила главным образом благодаря интенсивным поискам способов синтеза каучука, в которых участвовали крупнейшие учёные многих стран (Г. Бушарда, У. Тилден, немецкий учёный К Гарриес, И. Л. Кондаков, С. В. Лебедев и другие) . В 30-х годов было доказано существование свободнорадикального и ионного механизмов полимеризации. Большую роль в развитии представлений о поликонденсации сыграли работы У. Карозерса.
С начала 20-х годов 20 века развиваются также теоретические представления о строении полимеров Вначале предполагалось, что такие биополимеры, как целлюлоза, крахмал, каучук, белки, а также некоторые синтетические полимеры, сходные с ними по свойствам (например, полиизопрен) , состоят из малых молекул, обладающих необычной способностью ассоциировать в растворе в комплексы коллоидной природы благодаря нековалентным связям (теория “малых блоков” ) . Автором принципиально нового представления о полимерах как о веществах, состоящих из макромолекул, частиц необычайно большой молекулярной массы, был Г. Штаудингер. Победа идей этого учёного заставила рассматривать полимеры как качественно новый объект исследования химии и физики.
Введение
Природные и синтетические высокомолекулярные соединения (полимеры).
Высокомолекулярными соединениями, или полимерами, называют сложные вещества с большими молекулярными массами (порядка сотен, тысяч и миллионов), молекулы которых построены из множества повторяющихся элементарных звеньев, образующихся в результате взаимодействия и соединения друг с другом одинаковых или разных простых молекул — мономеров.
Следующие два процесса приводят к образованию высокомолекулярных соединений:
а) реакция полимеризации — процесс, в результате которого молекулы низкомолекулярного соединения (мономера) соединяются друг с другом при помощи ковалентных связей, образуя новое вещество (полимер), молекулярная масса которого в целое число раз больше, чем у мономера; полимеризация характерна, главным образом, для соединений с кратными (двойными или тройными) связями;
б) реакция по л иконд енс а ц и и — процесс образования полимера из низкомолекулярных соединений, содержащих две или несколько функциональных групп, сопровождающийся выделением за счет этих групп таких веществ, как вода, аммиак, галогеноводород и т. п.; состав элементарного звена полимера в этом случае отличается от состава исходного мономера.
Примерами природных вы с о к о м о л е к у л я р н ы х соединений могут служить крахмал и целлюлоза, построенные из элементарных звеньев, являющихся остатками моносахарида (глюкозы), а также белки, элементарные звенья которых представляют собой остатки аминокислот; сюда же относятся природные каучуки.
Все большее значение приобретают синтетические высокомолекулярные соединения или, как их иначе называют, синтетические в ы с о коп о л и м е ры. Это разнообразные материалы, обычно получаемые из доступного и дешевого сырья; на их основе получают пластические массы (пластмассы)—сложные композиции, в которые вводят различные наполнители и добавки, придающие полимерам необходимый комплекс технических свойств, — а также синтетические волокна.
Полимеры и пластмассы на их основе являются цепными заменителями многих природных материалов (металлов, дерева, кожи, клеев и т. п.). Синтетические волокна успешно заменяют натуральные— шелковые, шерстяные, хлопчатобумажные. При этом важно подчеркнуть, что по ряду свойств материалы на основе синтетических полимеров часто превосходят природные. Можно получать пластические массы, волокна и другие соединения с комплексом заданных технических свойств. Это позволяет решать многие задачи современной техники, которые не могли быть решены при использовании только природных материалов.
Представители полимеров.
Полимеризационные
смолы. К полимеризационным смолам относятся
полимеры, получаемые реакцией полимеризации
преимущественно этиленовых углеводородов
или их производных.
Полиэтилен —
представляет собой полимер, образующийся
при полимеризации этилена, например,
при сжатии его до
150-250МПа при 150-250°C (полиэтилен высокого
давления)
…+CH2 =CH2 +CH2 =CH2 +CH2 =CH2 +…→
→… - CH2 - CH2 - CH2 - CH2 - CH2 - CH2 - …
полиэтилен
Или сокращенно:
nCH2 =CH2 →( - CH2 - CH2 -)n
этилен полиэтилен
Реакцию полимеризации можно представить как результат раскрытия двойных связей в множестве молекул непредельного соединения (в данном случае этилена) и последующего соединения этих молекул друг с другом в одну гигантскую макромолекулу. Величина n выражает степень полимеризации — указывает число мономерных звеньев, образующих макромолекулу. Начало полимеризации этилена вызывается введением небольшого количества (0,05—0,1 %) кислорода.
Найдены катализаторы, благодаря которым этилен полимеризуется при низких давлениях. Например, в присутствии триэтилалюминия (С2Н5)зА1 с добавкой хлорида титана (IV) TiCl4 (катализатор Циглера) полимеризация протекает при атмосферном давлении (получается полиэтилен низкого давления); на оксидах хрома (катализатор Филипса) полимер образуется при давлении до 10 МПа (полиэтилен среднего давления).
Полиэтилен — предельный углеводород с молекулярной массой от 10 000 до 400 000. Он представляет собой бесцветный полупрозрачный в тонких и белый в толстых слоях, воскообразный, но твердый материал с температурой плавления 110—125°С. Обладает высокой химической стойкостью и водонепроницаемостью, малой газопроницаемостью. Его применяют в качестве электроизоляционного материала, а также для изготовления пленок, используемых в качестве упаковочного материала, для изготовления легкой небьющейся посуды, шлангов и трубопроводов для химической промышленности. Свойства полиэтилена зависят от способа его получения; например, полиэтилен высокого давления обладает меньшей плотностью и меньшей молекулярной массой (10000-45 000), чем полиэтилен низкого давления (молекулярная масса 70 000-400 000), что сказывается на технических свойствах. Для контакта с пищевыми продуктами допускается только полиэтилен высокого давления, так как полиэтилен низкого давления может содержать остатки катализаторов - вредные для здоровья человека соединения тяжелых металлов.
Полипропилен — полимер пропилена, следующего за этиленом гомолога непредельных этиленовых углеводородов:
nCH2 =CH→… - CH2 - CH - CH2 - CH -…
│ │ │
CH3 CH3 CH3
пропилен
Полимеризация протекает в присутствии катализаторов. В зависимости от условий полимеризации получают полипропилен, различающийся по структуре макромолекул, а, следовательно, и по свойствам. По внешнему виду это каучукоподобная масса, более или менее твердая и упругая. Отличается от полиэтилена более высокой температурой плавления. Например, полипропилен с молекулярной массой выше 80 000 плавится при 174—175 °С.
Используют полипропилен для электроизоляции, для изготовления защитных пленок, труб, шлангов, шестерен, деталей приборов, а также высокопрочного и химически стойкого волокна. Последнее применяют в производстве канатов, рыболовных сетей и др. Пленки из полипропилена значительно прозрачнее и прочнее полиэтиленовых, пищевые продукты в упаковке из полипропилена можно подвергать стерилизации, варке и разогреванию.
Полистирол — образуется при полимеризации стирола:
nCH2 =CH→… - CH2 - CH - CH2 - CH - CH2 - CH -…
│ │ │ │
C6H5 C6H5 C6H5 C6H5
стирол
Он может быть получен в виде прозрачной стеклообразной массы. Применяется как органическое стекло, для изготовления промышленных товаров (пуговиц, гребней и т. п.), в качестве электроизолятора.
Поливинилхлорид (полихлорвинил)—получается полимеризацией винилхлорида:
nCH2 =CH→… - CH2 - CH - CH2 - CH - CH2 - CH -…
│ │ │ │
Cl Cl Cl Cl
винилхлорид
Это — эластичная масса, очень стойкая к действию кислот и щелочей. Широко используется для футеровки труб и сосудов в химической промышленности. Применяется для изоляции электрических проводов, изготовления искусственной кожи, линолеума, непромокаемых плащей. Хлорированием поливинилхлорида получают перхлорвиниловую смолу, из которой готовят химически стойкое синтетическое волокно хлорин.
Политетрафторэтилен — полимер тетрафторэтилена:
nCF2 =CF2 →( - CF2 - CF2 -)n
тетрафторэтилен политетрафторэтилен
Политетрафторэтилен выпускается в виде пластмассы, называемой тефлоном или фторопластом. Весьма стоек по отношению к щелочам, концентрированным кислотам и другим реагентам. По химической стойкости превосходит золото и платину. Негорюч, обладает высокими диэлектрическими свойствами. Применяется в химическом машиностроении, электротехнике.
Полиакрилаты и полиакрилонитрил. Важное значение имеют полимеры непредельных акриловой СН2=СН—СООН и метакриловой СН2=С(СНз)—СООН кислот, особенно их метиловых эфиров — метилакрилата и метилметакрилата, а также нитрила акриловой кислоты (или акрилонитрила) СН2 = СН—C ≡ N — производного этой кислоты, в котором карбоксильная группа —СООН заменена группой —C≡N. Строение важнейших из этих полимеров выражается формулами:
- CH2 - CH - - CH2 - C - - CH2 - CH -
│ │ │
CООСH3 n CООСH3 n C≡N n
Полиметилакрилат и полиметилметакрилат — твердые, бесцветные, прозрачные, стойкие к нагреванию и действию света, пропускающие ультрафиолетовые лучи полимеры. Из них изготовляют листы прочного и легкого органического стекла, широко применяемого для различных изделий. Из полиакрилонитрила получают нитрон (или орлон) — синтетическое волокно, идущее на производство трикотажа, тканей (костюмных и технических).
Каучуки — эластичные материалы, из которых путем специальной обработки получают резину. В технике из каучуков изготовляют шипы для автотранспорта, самолетов, велосипедов; каучуки применяют для электроизоляции, а также производства промышленных товаров и медицинских приборов.
Натуральный (природный) каучук (ПК) представляет собой высокомолекулярный непредельный углеводород, молекулы которого содержат большое число двойных связей; состав его может быть выражен формулой (С5Н8)n (где значение n составляет от 1000 до 3000); он является полимером изопрена:
Информация о работе Использование полимеров в сельском хозяйстве