История и происхождение кальция

Автор работы: Пользователь скрыл имя, 04 Декабря 2013 в 23:15, курсовая работа

Краткое описание

Ка́льций — элемент главной подгруппы второй группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 20. Обозначается символом Ca (лат.Calcium). Простое вещество кальций (CAS-номер: 7440-70-2) — мягкий, химически активный щёлочноземельный металл серебристо-белого цвета, лёгкий металл (немногим лишь тяжелее воды), ковкий, не загрязнённый примесями, обладает хорошей пластичностью и поддаётся всем видам обработки давлением.

Вложенные файлы: 1 файл

История и происхождение названия.docx

— 139.42 Кб (Скачать файл)

Ка́льций — элемент главной подгруппы второй группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 20. Обозначается символом Ca (лат.Calcium). Простое вещество кальций (CAS-номер: 7440-70-2) — мягкий, химически активный щёлочноземельный металл серебристо-белого цвета, лёгкий металл (немногим лишь тяжелее воды), ковкий, не загрязнённый примесями, обладает хорошей пластичностью и поддаётся всем видам обработки давлением.

 

Биография металла

Гемфри Дэви (английский химик) открыл этот элемент во время знаменитой «атаки» на щелочные земли в 1808году выделившим металлический кальций электролитическим методом. Дэви подверг электролизу смесь влажной гашёной извести с оксидом ртути HgO на платиновой пластине, которая являлась анодом. Катодом служила платиновая проволока, погруженная в жидкую ртуть. В результате электролиза получалась амальгама кальция. Отогнав из неё ртуть, Дэви получил металл, названный кальцием. Вольтов столб1 в руках ученого продолжал творить чудеса. Известняк, разбитый энергией электричества, «отдал» в руки ученых удивительно агрессивный металл — кальций. Сообщение об этом открытии вызвало большой интерес в научном мире.

В 1855 году Бунзен и Матиссен получили чистый кальций электролизом расплавленного хлористого кальция.  Только в 1896 году в Германии разработан промышленный способ получения кальция. В 1938 году  А. И. Войницкий предложил технологию вакуумно-термического восстановления оксида кальция, а в конце Второй мировой войны в США алюминотермический способ получения кальция получил промышленное применение.

Название элементу дано от латинского слова «кальке», что в  переводе на русский язык означает «известь, мягкий камень».

Чистый оксид кальция  впервые описан немецким ученым-химиком  И.Потт. Это произошло в 1746 году. Соединения кальция — известняк, мрамор, гипс (а также известь — продукт обжига известняка) применялись в строительном деле уже несколько тысячелетий назад. Вплоть до конца XVIII века химики считали известь простым телом. В 1789 году А.Лавуазье предположил, что известь, магнезия, барит, глинозём и кремнезём — вещества сложные.

 

Характеристика  кальция

Если кусочек кальция  нагреть, он сгорает пламенем кирпично-красного цвета с образованием белого дыма. Плотность кальция меньше плотности алюминия, магния и бериллия. На воздухе он быстро окисляется, а при небольшом нагреве сгорает ярко-красным пламенем. Из горячей воды кальций бурно вытесняет водород, образуя гидрооксид кальция. Он активно соединяется с галогенами, серой, азотом, в струе водорода образует гидрид, при нагревании восстанавливает металлы из оксидов. Это свойство кальция применяют металлурги, добавляя его в расплавленный металл для связывания растворенного кислорода.

В наружной оболочке атома  кальция два валентных электрона, довольно непрочно связанных с ядром. Поэтому-то в чистом виде кальция  в природе не найти. Но он — обычная  составная часть силикатных пород, наиболее часто встречающихся в  земной коре.

Кальций обладает большой  химической активностью. В ряду напряжений он располагается среди наиболее электроотрицательных металлов. При  комнатной температуре кальций  не реагирует с сухим воздухом. В порошкообразном состоянии  при нагревании до 300°С он горит в кислороде, а при температуре выше 300°С взаимодействует с азотом, образуя нитрид Ca3N2. Во влажном воздухе кальций покрывается слоем гидроокиси. При температуре выше 400°С он образует с водородом гидрид Ca и интенсивно реагирует с галогенами. В концентрированных растворах NaOH и в растворах соды кальций почти не разрушается. Слабо действуют на кальций крепкая серная и азотная кислоты. Сильно действуют на кальций водные растворы соляной и азотной кислот.

Получение Кальция

Кальций впервые получен  Дэви в 1808 г. с помощью электролиза. Но, как и другие щелочные и щелочноземельные металлы, элемент №20 нельзя получить электролизом из водных растворов. Кальций получают при электролизе его расплавленных солей.

Это сложный и энергоемкий  процесс. В электролизере расплавляют  хлорид кальция с добавками других солей (они нужны для того, чтобы  снизить температуру плавления  СаСl2).

Стальной катод только касается поверхности электролита; выделяющийся кальций прилипает  и застывает на нем. По мере выделения  кальция катод постепенно поднимают  и в конечном счете получают кальциевую «штангу» длиной 50...60 см. Тогда ее вынимают, отбивают от стального катода и начинают процесс сначала. «Методом касания» получают кальций сильно загрязненный хлористым кальцием, железом, алюминием, натрием. Очищают его переплавкой в атмосфере аргона.

Если стальной катод заменить катодом из металла, способного сплавляться  с кальцием, то при электролизе  будет получаться соответствующий  сплав. В зависимости от назначения его можно использовать как сплав, либо отгонкой в вакууме получить чистый кальций. Так получают сплавы кальция с цинком, свинцом и  медью.

Отличительной особенностью схемы является утилизация выделяющегося  при электролизе хлора, оборот катодного  медно-кальциевого сплава, а также использование тепла отходящих газов для повышения концентрации хлорида кальция в чистом растворе.

Технологическая схема электролитического получения кальция

 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

 

Свободный металлический  кальций получают электролизом расплава, состоящего из CaCl2 (75-80 %) и KCl или из CaCl2 и CaF2, а также алюминотермическим восстановлением CaO при 1170—1200 °C:

 

Не только электролизом

Другой метод получения  кальция – металлотермический –  был теоретически обоснован еще  в 1865 г. известным русским химиком Н.Н. Бекетовым. Кальций восстанавливают алюминием при давлении всего в 0,01 мм ртутного столба. Температура процесса 1100...1200°C. Кальций получается при этом в виде пара, который затем конденсируют.

В последние годы разработан еще один способ получения элемента №20. Он основан на термической диссоциации  карбида кальция: раскаленный в  вакууме до 1750°C карбид разлагается  с образованием паров кальция  и твердого графита.

 

Свойства металла

Физические

Металл кальций существует в двух аллотропных модификациях. До 443 °C устойчив α-Ca с кубической гранецентрированной решеткой (параметра = 0,558 нм), выше устойчив β-Ca с кубической объемно-центрированной решеткой типа α-Fe (параметр a = 0,448 нм). Стандартная энтальпия перехода α → β составляет 0,93 кДж/моль.

При постепенном повышении  давления начинает проявлять свойства полупроводника, но не становится полупроводником  в полном смысле этого слова (металлом уже тоже не является). При дальнейшем повышении давления возвращается в  металлическое состояние и начинает проявлять сверхпроводящие свойства (температура сверхпроводимости  в шесть раз выше, чем у ртути, и намного превосходит по проводимости все остальные элементы). Уникальное поведение кальция похоже во многом на стронций (то есть параллели в периодической системе сохраняются)[4].

Химические

Кальций — типичный щёлочноземельный металл. Относится к очень активным химическим элементам. Химическая активность кальция высока, но ниже, чем более тяжёлых щёлочноземельных металлов. Он легко взаимодействует с кислородом, углекислым газом и влагой воздуха, из-за чего поверхность металлического кальция обычно тускло серая, поэтому в лаборатории кальций обычно хранят, как и другие щёлочноземельные металлы, в плотно закрытой банке под слоем керосина или жидкого парафина.

В ряду стандартных потенциалов  кальций расположен слева от водорода. Стандартный электродный потенциал пары Ca2+/Ca0 −2,84 В, так что кальций активно реагирует с водой, но без воспламенения:

С активными неметаллами (кислородом, хлором, бромом) кальций реагирует при обычных условиях:

При нагревании на воздухе  или в кислороде кальций воспламеняется и горит красным пламенем с  оранжевым оттенком. С менее активными неметаллами (водородом, бором, углеродом, кремнием, азотом, фосфором и другими) кальций вступает во взаимодействие при нагревании, например:

Кроме фосфида кальция Ca3P2 известны также фосфиды кальция составов СаР и СаР5;

Кроме силицида кальция Ca2Si известны также силициды кальция составов CaSi, Ca3Si4 и CaSi2.

Протекание указанных  выше реакций, как правило, сопровождается выделением большого количества теплоты. Во всех соединениях с неметаллами  степень окисления кальция +2. Большинство  из соединений кальция с неметаллами  легко разлагается водой, например:

Ион Ca2+ бесцветен. При внесении в пламя растворимых солей кальция пламя окрашивается в кирпично-красный цвет.

 

Такие соли кальция, как хлорид CaCl2, бромид CaBr2, иодид CaI2 и нитрат Ca(NO3)2, хорошо растворимы в воде. Нерастворимы в воде фторид CaF2, карбонат CaCO3, сульфат CaSO4, ортофосфат Ca3(PO4)2, оксалат СаС2О4 и некоторые другие.

Важное значение имеет  то обстоятельство, что, в отличие  от карбоната кальция СаСО3, кислый карбонат кальция (гидрокарбонат) Са(НСО3)2 в воде растворим. В природе это приводит к следующим процессам. Когда холодная дождевая или речная вода, насыщенная углекислым газом, проникает под землю и попадает на известняки, то наблюдается их растворение, а тех же местах, где вода, насыщенная гидрокарбонатом кальция, выходит на поверхность земли и нагревается солнечными лучами, протекает обратная реакция

Так в природе происходит перенос больших масс веществ. В  результате под землей могут образоваться огромные провалы, а в пещерах  образуются красивые каменные «сосульки» — сталактиты и сталагмиты.

Наличие в воде растворенного  гидрокарбоната кальция во многом определяет временную жёсткость воды. Временной  её называют потому, что при кипячении  воды гидрокарбонат разлагается, и  в осадок выпадает СаСО3. Это явление приводит, например, к тому, что в чайнике со временем образуется накипь.

 

Применение кальция

До последнего времени  металлический кальций почти  не находил применения. США, например, до второй мировой войны потребляли в год всего 10...25 т кальция, Германия – 5...10 т. Но для развития новых областей техники нужны многие редкие и тугоплавкие металлы. Выяснилось, что кальции – очень удобный и активный восстановитель многих из них, и элемент №20 стали применять при получении тория, ванадия, циркония, бериллия, ниобия, урана, тантала и других тугоплавких металлов.

Способность кальция связывать  кислород и азот позволила применить  его для очистки инертных газов  и как геттер (Геттер – вещество, служащее для поглощения газов и  создания глубокого вакуума в  электронных приборах.) в вакуумной  радиоаппаратуре.

Кальций применяют в металлургии как активный раскислитель, его используют в качестве восстановителя при получении урана, тория, циркония, цезия, рубидия, ванадия, хрома.

Кальций образует интерметеллид2 - его используют для повышения твёрдости свинцовых сплавов в производстве баббитов, кабельных и аккумуляторных сплавов.

Негашеная известь применяется в строительном деле. Хлорид кальция благодаря сильной гигроскопичности применяется как увлажнитель или осушитель.

Фторид кальция - важная составляющая покровных рафинирующих флюсов, используемых при производстве алюминиевых сплавов.

Применение  металлического кальция

Главное применение металлического кальция — это использование его как восстановителя при получении металлов, особенно никеля, меди и нержавеющей стали. Кальций и его гидрид используются также для получения трудно-восстанавливаемых металлов, таких, как хром, торий и уран. Сплавы кальция со свинцом находят применение в аккумуляторных батареях и подшипниковых сплавах. Кальциевые гранулы используются также для удаления следов воздуха из электровакуумных приборов.

  • Металлотермия

Чистый металлический  кальций широко применяется в  металлотермии при получении  редких металлов.

  • Легирование сплавов

Чистый кальций применяется  для легирования свинца, идущего на изготовление аккумуляторных пластин, необслуживаемых стартерных свинцово-кислотных аккумуляторов с малым саморазрядом. Также металлический кальций идет на производство качественных кальциевых баббитов БКА.3

 

Как хранят кальций

Металлический кальций длительно  хранить можно в кусках весом  от 0,5 до 60 кг. Такие куски хранят в бумажных мешках, вложенных в железные оцинкованные барабаны с пропаянными и покрашенными швами. Плотно закрытые барабаны укладывают в деревянные ящики. Куски весом меньше 0,5 кг подолгу хранить нельзя – они быстро превращаются в окись, гидроокись и карбонат кальция.

 

Металл в природе

Кальций — один из наиболее распространенных элементов в природе.

Из-за высокой химической активности кальций в свободном  виде в природе не встречается.

На долю кальция приходится 3,38 % массы земной коры (5-е место по распространенности после кислорода, кремния, алюминия и железа). Содержание элемента в морской воде — 400 мг/л[3].

Изотопы. Кальций встречается в природе в виде смеси шести изотопов: 40Ca, 42Ca, 43Ca, 44Ca, 46Ca и 48Ca, среди которых наиболее распространённый — 40Ca — составляет 96,97 %.  
Из шести природных изотопов кальция пять стабильны. Шестой изотоп 48Ca, самый тяжелый из шести и весьма редкий (его изотопная распространённость равна всего 0,187 %), как было недавно обнаружено, испытывает двойной бета-распад с периодом полураспада 5,3×1019 лет.  
В горных породах и минералах. Большая часть кальция содержится в составе силикатов и алюмосиликатов различных горных пород (граниты, гнейсы и т. п.), особенно в полевом шпате — анортите Ca[Al2Si2O8].  
В виде осадочных пород соединения кальция представлены мелом и известняками, состоящими в основном из минерала кальцита (CaCO3). Кристаллическая форма кальцита — мрамор — встречается в природе гораздо реже.  
Довольно широко распространены такие минералы кальция, как кальцит CaCO3, ангидрит CaSO4, алебастр CaSO4·0.5H2O и гипс CaSO4·2H2O, флюорит CaF2, апатиты Ca5(PO4)3(F,Cl,OH), доломит MgCO3·CaCO3. Присутствием солей кальция и магния в природной воде определяется её жёсткость.  
Кальций, энергично мигрирующий в земной коре и накапливающийся в различных геохимических системах, образует 385 минералов (четвертое место по числу минералов).  
Миграция в земной коре. В естественной миграции кальция существенную роль играет «карбонатное равновесие», связанное с обратимой реакцией взаимодействия карбоната кальция с водой и углекислым газом с образованием растворимого гидрокарбоната: 
СаСО3 + H2O + CO2 ↔ Са (НСО3)2 ↔ Ca2+ + 2HCO3-  
(равновесие смещается влево или вправо в зависимости от концентрации углекислого газа).  
Биогенная миграция. В биосфере соединения кальция находятся практически во всех животных и растительных тканях (см. тж. ниже). Значительное количество кальция входит в состав живых организмов. Так, гидроксиапатит Ca5(PO4)3OH, или, в другой записи, 3Ca3(PO4)2·Са(OH)2 — основа костной ткани позвоночных, в том числе и человека; из карбоната кальция CaCO3 состоят раковины и панцири многих беспозвоночных, яичная скорлупа и др. В живых тканях человека и животных 1,4-2 % Са (по массовой доле); в теле человека массой 70 кг содержание кальция — около 1,7 кг (в основном в составе межклеточного вещества костной ткани).

Информация о работе История и происхождение кальция