Автор работы: Пользователь скрыл имя, 14 Мая 2013 в 19:50, контрольная работа
1. Описать состав, свойства, маркировку и сортамент алюминиевых сплавов и указать область их применения в машиностроении.
2. Описать строение металлов и типы кристаллических решеток.
3. Описать состав, свойства, маркировку и сортамент антифрикционных сплавов и указать область их применения в машиностроении.
4. Описать сущность процесса пластической деформации металлов и влияние холодной и горячей пластической деформации на структуру и свойства металлов.
В гранецентрированной кубической решетке (рис. б) атомы расположены в углах куба и центрах его граней. Эта решетка характеризуется периодом а, координационном числом К= 12, базисом, равным 4: (1/8) • 8 + ½ • 6 = 4; 8 атомов в углах куба и 6 атомов в центрах граней, каждый из которых принадлежит двум элементарным ячейкам. Кубическую гранецентрированную решетку имеют следующие металлы: Са, Pb, Ni, Ag, Au, Pt, FeY и др.
В гексагональной плотноупакованной решетке (рис. в) атомы расположены в вершинах и центрах шестигранных оснований призмы, кроме того, три атома находятся в средней плоскости призмы. Периоды решетки — а и с, причем с/а > 1 (например, с/а = 1,633 для Ru, Cd и с/а > 1,633 для Mg, Zn), координационное число К= 12, базис решетки равен 6.
3. Описать состав, свойства, маркировку и сортамент антифрикционных сплавов и указать область их применения в машиностроении.
Антифрикционные сплавы предназначены для изготовления подшипников (опор) скольжения, которые широко применяют в современных машинах и приборах из-за их устойчивости к вибрациям, бесшумности работы, небольших габаритов.
Основные служебные свойства подшипникового материала антифрикционность и сопротивление усталости. Антифрикционность — способность материала обеспечивать низкий коэффициент трения скольжения и тем самым низкие потери на трение и малую скорость изнашивания сопряженной детали-стального или чугунного вала.
Антифрикционные сплавы отличаются низкой способностью к адгезии, теплопроводностью и стабильностью свойств, а самое главное хорошей прирабатываемостью (т.е. способностью трущихся тел в начальный период трения постепенно улучшать контактирование поверхностей за счет их сглаживания).
Антифрикционность обеспечивают следующие свойства подшипникового материала:
- высокая теплопроводность;
- хорошая смачиваемость смазочным материалом;
- способность образовывать на поверхности защитные пленки мягкого металла;
- хорошая прирабатываемость, основанная на способности материала при трении легко пластически деформироваться и увеличивать площадь "фактического контакта, что приводит к снижению местного давления и температуры на поверхности подшипника.
Антифрикционные сплавы используются в различных конструктивных типах узлов трения машин и двигателей. Поэтому в процессе применения подобных материалов в конкретных узлах и условиях приводило к созданию разнообразных антифрикционных сплавов. Выделяются такие антифрикционные материалы как сплавы на основе олова или свинца - баббиты, меди - бронза, железа - серый чугун, металлокерамические сплавы - бронзографит, железографит, а также пластмассы текстолит, фторопласт-4, древесноложные пластики и сложные композиции типа "металл-пластмасса".
Подшипниковые материалы
- это наиболее распространенные антифрикционные
материалы, которые применяемые
для различных видов
Критериями для оценки подшипникового материала служат коэффициент трения и допустимые нагрузочно-скоростные характеристики: давление р, действующее на опору, скорость скольжения v, параметр pv, определяющий удельную мощность трения. Допустимое значение параметра pv тем больше,чем выше способность материала снижать температуру нагрева и нагруженность контакта, сохранять граничную смазку.
Чаще всего встречается
использование антифрикционных
Также в качестве антифрикционных
сплавов могут выступать
Менее распространенные, но все же востребованные антифрикционные материалы бывают на основе стали. Их используют в легких условиях работы, когда в процессе работы механизма есть небольшое давление и невысокие скорости скольжения. Сталь более твердый материал и имеет высокую температуру плавления, поэтому она плохо прирабатывается и легко схватывается с сопряженной поверхностью, из-за чего образуются задиры.
Встречается среди антифрикционных материалов и чугун. Некоторые чугуны имеют высокие антифрикционные свойства, благодаря графитовой составляющей ее структуре. Например, чугун с глобоидальной формой графита и с толстыми пластинками более износостоек, чем чугун с тонкими пластинками. Включения графита в чугунах выполняют роль мягкой составляющей. К их недостаткам следует отнести плохую прирабатываемость, чувствительность к недостатку смазки, пониженную стойкость к воздействию ударной нагрузки.
Ряд антифрикционных материалов очень широк, также как и его применение и самым распространенным из всех видов является олово и свинец, а также их сплавы в виде баббитов.
Антифрикционные сплавы предназначены для работы в режиме жидкостного трения, сочетающемся в реальных условиях эксплуатации с режимом граничной смазки. Из-за перегрева возможно разрушение граничной масляной пленки. Поведение материала в этот период работы зависит от его сопротивляемости схватыванию. Оно наиболее высоко у сплавов, имеющих в структуре мягкую составляющую.
Металлические материалы по своей структуре подразделяются на два типа сплавов:
1) сплавы с мягкой
матрицей и твердыми
2) сплавы с твердой
матрицей и мягкими
К сплавам первого
типа относятся баббиты и сплавы
на основе меди —
бронзы и латуни. Мягкая матрица в них
обеспечивает не только защитную
реакцию подшипникового материала на
усиление трения и хорошую прирабатываемость,
но и особый микрорельеф поверхности,
улучшающий снабжение смазочным материалом
участков трения и теплоотвод с них. Твердые
включения, на которые опирается вал, обеспечивают
высокую износостойкость.
Трение происходит в подшипниках скольжения между валом и вкладышем подшипника. Поэтому для вкладыша подшипника подбирают такой материал, который предохраняет вал от износа, сам минимально изнашивается, создает условия для оптимальной смазки и уменьшает коэффициент трения.
Антифрикционными сплавами служат сплавы на основе олова, свинца, меди или алюминия, обладающие специальными антифрикционными свойствами (табл. 1). Антифрикционные свойства сплавов проявляются при трении в подшипниках скольжения. Это, в первую очередь, низкий коэффициент трения, хорошая прирабатываемость к сопрягаемой детали, высокая теплопроводность, способность удерживать смазку и др. Из антифрикционных сплавов наиболее широко применяют баббит, бронзу, алюминиевые сплавы, чугун и металлокерамические материалы.
Таблица 1
Материал |
Марка |
Условия применения |
Назначение | |
|
|
V Si |
окружная скорость, MfC |
|
Баббит |
Б88 БС6 |
20 15 |
50 |
Подшипники быстроходных дизелей Подшипники автотракторных двигателей |
Бронза |
БрОЦС5-5-5 |
8 |
3 |
Подшипники электродвигателей центробежных насосов |
Латунь |
ЛМцЖ52-4-1 |
4 |
2 |
Подшипники рольгангов, конвейеров, редукторов |
Чугун |
АЧС-1 АЧС-5 АЧВ-1 АЧК-1 АЧС-3 АЧК-2 |
25 20 20 20 6 12 |
5 1,2 1,0 2,0 0,75 1,0 |
Для работы с закаленным
или нормализованным с |
Металлокерамика |
Бронзо- графит
Железо-графит |
12-18 0,8-1,2
15 0,6-1,0 |
0,1 4,0
0,1 4,0 |
Подшипники конвейеров сельскохозяйственных и других машин; подшипники, работающие в местах, труднодоступных для подачи смазки |
4. Описать сущность процесса пластической деформации металлов и влияние холодной и горячей пластической деформации на структуру и свойства металлов.
Деформация – изменение формы и размеров твердого тела под воздействием приложенных к нему нагрузок. Различают деформацию упругую (обратимую) и пластическую (необратимую).
Пластическая деформация остается после снятия внешней нагрузке, (тело не восстанавливает первоначальную форму и размеры).
Пластическая деформация
сопровождается смещением одной части кристалла
Способность металлов и сплавов к пластической деформации имеет важное практическое значение, т.к. все процессы обработки металлов давлением основаны на пластическом деформировании заготовок.
Величина пластической
При пластической деформации изменяется не только форма, но и свойства деформируемого металла. В реальном поликристаллическом металле происходит изменение форм зерен (кристаллитов) дробление отдельных зерен, а также ориентация их определенных кристаллографических осей в направлении течения металла. Преимущественная ориентация зерен называется текстурой. Текстура металлов обусловливает анизотропию их механических, магнитных и электрических свойств. В общем случае анизотропия свойств металла отрицательно сказывается при дальнейшей его обработки и эксплуатации изделий. В некоторых случаях специально стремятся создать максимально текстурованный в определенных направлениях для повышения механической прочности или магнитно-электрических свойств.
В зависимости от температурно-скоростных условий деформирования различают холодную и горячую деформацию.
Холодная деформация характеризуется изменением формы зерен, которые вытягиваются в направлении наиболее интенсивного течения металла. При холодной деформации формоизменение сопровождается изменением механических и физико-химических свойств металла. Это явление называют упрочнением (наклепом). Изменение механических свойств состоит в том, что при холодной пластической деформации по мере ее увеличения возрастают характеристики прочности, а характеристики снижаются. Металл становится более твердым, но мене пластичным. Упрочнение возникает вследствие поворота плоскостей скольжения, увеличение искажений кристаллической решетки в процессе холодного деформирования (накопление дислокаций у границы зерен).
Изменение, внесенные холодной
деформацией в структуру и свойства металла не обратимы. Они могут
быть устранены, например, с помощью термической
В этом случае происходит перестройка, при которой за счет дополнительной тепловой энергии, увеличивается подвижность атомов и в твердом металле без фазовых превращений из множества центров растут новый зерна, заменяющие собой вытянутые “деформированные зерна”.
Явление зарождения и роста, новых равноосных зерен взамен деформированных, вытянутых, происходящее при определенных температурах, называется рекристаллизацией. Для чистых металлов рекристаллизация начинается при абсолютной температуре, равной 0,4 абсолютной температуре плавления металла. Горячая обработка металлов давлением производится при температурах, значительно превышающих температуру их рекристаллизации, когда скорость процесса упрочнения, вызванного деформацией. При этом микроструктура металла после обработки давлением оказывается равноосной, без следов упрочнения. Зерна в металле получаются тем мельче, чем больше степень деформации.
Перед горячей обработкой давлением металлы и стали нагревают до определенной температуры (начало горячей обработки давлением) для повышения их пластичности и уменьшения сопротивления деформации. Однако в процессе обработки температура металла понижается. Минимальная температура, при которой можно производить обработку, называется температурой окончания обработки давлением. Область температуры между началом и окончанием, в которой металл или сплав обладает наилучшей пластичностью, наименьшей склонностью к росту зерна и минимальным сопротивлением деформированию, называют температурным интервалов горячей обработки давлением.
При этом температура нагрева металла выбирается такой, чтобы не возник, пережег либо перегрев. Пережег, характеризуется окислением металла на границе зерен, в результате чего он становится хрупким и при ударе разрушается. Перегрев сопровождается резким ростом размеров зерен, вследствие чего ухудшаются механические свойства.
Каждый металл и сплав имеет свой строго определенный температурный интервал горячей обработки давлением. Например, алюминиевый сплав АК4 – 470-350С; медный сплав БрАЖМц – 900-750С; титановый сплав Вт8 -1100-900С; сталь 45 – 1200-750С.
Заготовка должна быть равномерно
нагрета по всему объему до требуемой
температуры. Нагрев осуществляется в
различных печах и
Информация о работе Контрольная работа по "Анализу материаловедения"