Основные концепции химии и биологии

Автор работы: Пользователь скрыл имя, 04 Июня 2013 в 14:20, реферат

Краткое описание

Аристотель и Эмпедокл объясняли все видимое разнообразие тел природы с антиатомистических позиций: они считали, что в телах сочетаются различные элементы-стихии или элементы-свойства: тепло и холод, сухость и влажность. Подобное учение об элементах-свойствах было развито в алхимии, которая изобиловала такими, например, рецептами приготовления необходимых веществ: " возьмите немного горючести, прибавьте к нему текучести, отнимите влажность..." и т.п. Однако ни идеи Демокрита об атомах, ни представления Эмпедокла об элементах-стихиях не нашли применения ни в металлургии, ни в стеклоделии, ни в гончарном ремесле.

Вложенные файлы: 1 файл

КСЕ_Химия.docx

— 31.88 Кб (Скачать файл)

Наибольшее  распространение имеет гетерогенный катализ, — с его помощью осуществляется 80% всех каталитических реакций в  современной химии.

Применение  катализаторов послужило основанием коренной ломки всей химической промышленности. Благодаря им стало возможным  использовать в качестве сырья для  органического синтеза парафины и циклопарафины, до сих пор считавшиеся  «химическими мертвецами». Катализ  необходим при производстве маргарина, многих пищевых продуктов, а также  средств защиты растений. Почти вся  промышленность основной химии (производство неорганических кислот, оснований и  солей) и «тяжелого» органического  синтеза, включая получение горюче-смазочных  материалов, базируется на катализе. Последнее  время тонкий органический синтез становится все более каталитическим. 60—80% всей химии основано на каталитических процессах. Химики не без основания говорят, что некаталитических процессов вообще не существует, поскольку все они протекают в реакторах, материал стенок которых служит своеобразным катализатором.

Долгое  время сам катализ оставался  загадкой природы, вызывая к жизни  самые разнообразные теории, как  чисто химические, так и физические. Эти теории, даже будучи ошибочными, оказывались полезными хотя бы потому, что наталкивали ученых на новые  эксперименты. Все дело в том, что  для большинства промышленно важных химических процессов катализаторы подбирались путем бесчисленных проб и ошибок. Так, например, для реакции синтеза аммиака в 1913—1914 гг. немецкие химики испробовали в качестве катализаторов более 20 тысяч химических соединений, следуя периодической системе элементов и разноообразно сочетая их.

Сегодня можно сделать некоторые выводы о сущности катализа.

  1. Реагирующие вещества вступают в контакт с катализатором, взаимодействуют с ним, в результате чего происходит ослабление химических связей. Если реакция происходит в отсутствие катализатора, то активация молекул реагирующих веществ должна происходить за счет подачи в реактор энергии извне.
  2. В общем случае любую каталитическую реакцию можно представить проходящей через промежуточный комплекс, в котором происходит перераспределение ослабленных химических связей.
  3. В подавляющем большинстве случаев в качестве катализаторов выступают соединения бертоллидного типа с переменным составом, отличающиеся наличием ослабленных химических связей или даже свободных валентностей, что придает им высокую химическую активность. Молекулы соединений бертоллидного типа содержат широкий набор энергетически неоднородных связей или даже свободные атомы на поверхности.
  4. Следствиями взаимодействия реагентов с катализатором являются ход реакции в заданном направлении и увеличение скорости реакции, так как на поверхности катализатора увеличивается число встреч реагирующих молекул. Кроме того, катализатор захватывает некоторую часть энергии экзотермической реакции для энергетической подпитки все новых актов реакции и ее общего ускорения.

На  современном этапе своего развития химия открыла множество эффективных  катализаторов. Среди них — ионнообменные  смолы, металлорганические соединения, мембранные катализаторы. Каталитическими  свойствами обладают многие химические элементы периодической системы, но важнейшую роль играют металлы платиновой группы и редкоземельные металлы.

С участием катализаторов скорость некоторых  реакций возрастает в 10 млрд. раз. Есть катализаторы, позволяющие не просто контролировать состав конечного продукта, но и способствующие образованию  молекул определенной формы, что  сильно влияет на физические свойства продукта (твердость, пластичность).

В современных условиях одно из важнейших  направлений развития учения о химических процессах — создание методов  управления этими процессами, поэтому химическая наука занимается разработкой таких проблем, как химия плазмы, радиационная химия, химия высоких давлений и температур.

Химия плазмы изучает химические процессы в низкотемпературной плазме при температурах от 1000 до 10 000°С. Такие процессы характеризуются возбужденным состоянием частиц, столкновением молекул с заряженными частицами и очень высокими скоростями протекания химических реакций. В плазмохимических процессах скорость перераспределения химических связей очень высока: длительность элементарных актов химических превращений составляет около 10-13 с при почти полном отсутствии обратимости реакции. Скорость аналогичных химических процессов в обычных реакторах из-за обратимости снижается в тысячи раз. Поэтому плазмохимические процессы очень производительны. Например, производительность метанового плазмохимического реактора (его размеры: длина — 65 см, диаметр — 15 см) составляет 75 т ацетилена в сутки. В этом реакторе при температуре 3000—3500°С за одну десятитысячную долю секунды около 80% метана превращается в ацетилен.

Плазменная  химия в последнее время все  больше внедряется в промышленное производство. Уже созданы технологии производства сырья для порошковой металлургии, разработаны методы синтеза для  целого ряда химических соединений. В 1970-е гг. были созданы плазменные сталеплавильные печи, позволяющие  получать самые высококачественные металлы. Разработаны методы ионно-плазменной обработки поверхности инструментов, износостойкость которых увеличивается  в несколько раз.

Плазмохимия позволяет синтезировать ранее  неизвестные материалы, такие, как  металлобетон, в котором в качестве связующего элемента используются различные  металлы. Металлобетон образуется при сплавлении частиц горной породы и прочном сжатии их с металлом. По своим качествам он превосходит обычный бетон в десятки и сотни раз.

Одним из самых молодых направлений  в исследовании химических процессов  является радиационная химия, которая зародилась во второй половине XX в. Предметом ее разработок стали превращения самых разнообразных веществ под воздействием ионизирующих излучений. Источниками ионизирующего излучения служат рентгеновские установки, ускорители заряженных частиц, ядерные реакторы, радиоактивные изотопы. В результате радиационно-химических реакций вещества получают повышенную термостойкость и твердость.

Наиболее  важными процессами радиационно-химической технологии являются полимеризация, вулканизация, производство композиционных материалов, в том числе получение полимербетонов путем пропитки обычного бетона каким-либо полимером с его последующим облучением. Такие бетоны имеют в четыре раза более высокую прочность, обладают водонепроницаемостью и высокой коррозионной стойкостью.

Принципиально новой и исключительно важной областью учения о химических процессах  является самораспространяющийся высокотемпературный синтез тугоплавких и керамических материалов. Обычно их производство осуществляется методом порошковой металлургии, суть которого заключается в прессовании и сжатии при высокой температуре (1200—2000°С) металлических порошков. Самораспространяющийся синтез происходит гораздо проще: он основан на горении одного металла в другом или горении металла в азоте, углероде, кремнии и т.п.

Давно известно, что процесс горения  представляет собой соединение кислорода  с горючим веществом, поэтому  горение — это реакция окисления  горючего вещества. При этом происходит перемещение электронов от атомов окисляемого  вещества к атомам кислорода. С этой точки зрения горение возможно не только в кислороде, но и в других окислителях. На этом выводе и основан  самораспространяющийся высокотемпературный  синтез — тепловой процесс горения  в твердых телах. Он представляет собой, например, горение порошка  титана в порошке бора, или порошка  циркония в порошке кремния. В  результате такого синтеза получаются сотни тугоплавких соединений самого высокого качества.

Очень важно, что данная технология не требует  громоздких процессов, отличается высокой  технологичностью и легко поддается  автоматизации.

Еще одна область развития учения о химических процессах — химия высоких и сверхвысоких давлений. Химические превращения веществ при давлениях выше 100 атм относятся к химии высоких давлений, а при давлениях выше 1000 атм — к химии сверхвысоких давлений. Высокие давления в химии используются с начала XX в. — аммиачное производство осуществлялось при давлении 300 атм и температуре 600°С. Но в последнее время используются установки, в которых достигается давление 5000 атм, а испытания проводятся при давлении 600 000 атм, которое достигается за счет ударной волны при взрыве в течение миллионной доли секунды. При ядерных взрывах возникают еще более высокие давления.

При высоком давлении сближаются и деформируются  электронные оболочки атомов, что  ведет к повышению реакционной  способности веществ. При давлении 102—103 атм исчезает различие между жидкой и газовой фазами, а при 103—105 атм — между твердой и жидкой фазами. При высоком давлении сильно меняются физические и химические свойства веществ. Например, при давлении 20 000 атм металл становится эластичным, как каучук. Обычная вода при высоких температуре и давлении становится химически активной. С повышением давления многие вещества переходят в металлическое состояние. Так, в 1973 г. ученые наблюдали металлический водород при давлении 2,8 млн. атм.

Одним из важнейших достижений химии сверхвысоких давлений стал синтез алмазов. Он идет при давлении 50 000 атм и температуре 2000°С. При этом графит кристаллизуется в алмазы. Также алмазы можно синтезировать и с применением ударных волн. В последнее время ежегодно производятся тонны синтетических алмазов, которые лишь незначительно отличаются от природных по своим свойствам. Получающиеся алмазы используются для промышленных целей — в режущем и буровом оборудовании. Удалось синтезировать черные алмазы — карбонадо, которые тверже природных алмазов. Они используются для обработки самих алмазов.

В настоящее время налажено промышленное производство не только искусственных  алмазов, но и других драгоценных  камней — корунда (красного рубина), изумруда и др. При высоких давлениях  синтезируют и другие материалы, отличающиеся высокой термостойкостью. Так, из нитрида бора при давлении 100 000 атм и температуре 2000°С синтезирован боразон — материал, пригодный для сверления и шлифования деталей из чрезвычайно твердых материалов при очень высоких температурах.


Информация о работе Основные концепции химии и биологии