Полимеры. Полимеризация и поликонденсация

Автор работы: Пользователь скрыл имя, 14 Сентября 2013 в 19:59, реферат

Краткое описание

ПОЛИМЕ́РЫ - вещества, молекулы которых (макромолекулы) состоят из большого числа повторяющихся звеньев; молекулярная масса полимеров может изменяться от нескольких тысяч до многих миллионов. По происхождению полимеры делят на природные, или биополимеры (напр., белки, нуклеиновые кислоты, натуральный каучук), и синтетические (напр., полиэтилен, полиамиды, эпоксидные смолы), получаемые методами полимеризации и поликонденсации.

Содержание

1. Полимеры
2. Полимеризация и поликонденсация
3. Структуры полимеров
4. Особенности полимеров
5. Свойства полимеров
6. Классификация полимеров
7. Синтетические полимеры. Искусственные полимерные материалы
8. Огнеупорные полимеры
9. Применение полимеров

Вложенные файлы: 1 файл

полимеры.doc

— 112.00 Кб (Скачать файл)

 

 

 

 

 

 

РЕФЕРАТ

по химии

 

на тему: «Полимеры»

 

 

 

 

 

 

Выполнила: ученица 10 «Б» класса

Самохвалова Екатерина

 

 

 

 

 

 

 

 

г. Шахты

2012 г.

СОДЕРЖАНИЕ

 

 

  1. Полимеры

 

  1. Полимеризация и поликонденсация

 

  1. Структуры полимеров

 

  1. Особенности полимеров

 

  1. Свойства полимеров

 

  1. Классификация полимеров
  1. Синтетические полимеры. Искусственные полимерные материалы

  1. Огнеупорные полимеры

 

  1. Применение полимеров

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Полимеры

 

ПОЛИМЕ́РЫ - вещества, молекулы которых (макромолекулы) состоят из большого числа повторяющихся звеньев; молекулярная масса полимеров может изменяться от нескольких тысяч до многих миллионов. По происхождению полимеры делят на природные, или биополимеры (напр., белки, нуклеиновые кислоты, натуральный каучук), и синтетические (напр., полиэтилен, полиамиды, эпоксидные смолы), получаемые методами полимеризации и поликонденсации. По форме молекул различают линейные, разветвленные и сетчатые полимеры, по природе — органические, элементоорганические, неорганические полимеры. Для линейных и разветвленных полимеров характерен комплекс специфических свойств, напр. способность образовывать анизотропные волокна и пленки, а также существовать в высокоэластичном состоянии. Полимеры — основа пластмасс, химических волокон, резины, лакокрасочных материалов, клеев, ионитов. Из биополимеров построены клетки всех живых организмов. Термин «полимеры введен Й. Я. Берцелиусом в 1833.

 

Полимеризация и поликонденсация

 

Реакцию образования полимера из мономера называют полимеризацией. В процессе полимеризации вещество может переходить из газообразного или жидкого состояния в состояние весьма густой жидкости или твердое. Реакция полимеризации не сопровождается отщеплением каких-либо низкомолекулярных побочных продуктов. При полимеризации полимер и мономер характеризуются одинаковым элементным составом.

Полимеризация соединений с двойными связями, как правило, протекает по цепному механизму. Для начала цепной реакции необходимо, чтобы в исходной инертной массе зародились активные частицы. В цепных реакциях одна частица вовлекает в реакцию тысячи неактивных молекул, образующих длинную цепь. Первичными активными центрами являются свободные радикалы и ионы.

Радикалы — это части молекулы, образующиеся при разрыве электронной  пары и содержащие неспаренный электрон (например, метил CH3- , фенил C6H6-, этиловая группа C2H5- и т. д.). Образование первоначальных радикалов и ионов может происходить под действием теплоты, света, различных ионизирующих излучений, специально вводимых катализаторов.

Помимо реакции полимеризации  полимеры можно получить поликонденсацией — реакцией, при которой происходит перегруппировка атомов полимеров и выделение из сферы реакции воды или других низкомолекулярных веществ.

 

 

 

Структуры полимеров

 

Полимеры могут существовать в  кристаллическом (см. Кристаллические полимеры) и аморфном состояниях. Кроме аморфного и кристаллического, известно также мезофазное промежуточное состояние полимеров. При взаимной упаковке цепных молекул в полимерных веществах молекулы стремятся располагаться параллельно друг другу. Большая длина молекул полимеров, возможность их спутывания, скручивания и т.п. затрудняют упорядочение и кристаллизацию полимерных веществ. Поэтому наряду с равновесными кристаллическими структурами в полимерных веществах наблюдаются разнообразные типы упорядоченности, называемые иногда паракристаллическими. Упорядоченность в этом случае ниже, чем в идеальных кристаллах, но выше, чем в жидкостях. В отличие от аморфных тел и жидкостей, полимеры, вследствие параллельности упаковки молекул, могут быть анизотропны и отличаются постоянной устойчивой анизотропией некоторых физических свойств.

Необходимое условие  кристаллизации — регулярность достаточно длинных участков макромолекул. Способность полимеров к кристаллизации зависит от множества условий: температуры и скорости кристаллизации, термической предыстории, присутствию посторонних веществ. В зависимости от условий кристаллизации может быть получено множество морфологических форм кристаллических структур даже для одного и того же полимера.

В кристаллических полимерах возможно возникновение разнообразных надмолекулярных  структур (фибрилл, сферолитов, монокристаллов и др.), тип которых во многом определяет свойства полимерного материала. Разнообразие надмолекулярных структур в кристаллических полимерах обусловлено гибкостью и длинно-цепочным строением полимеров. Кристаллические или кристаллизующиеся полимеры содержат более 70% кристаллических НМС. Это, например, полиэтилен высокой плотности, полипропилен, фторопласт, некоторые виды полиамидов, полиформальдегид.

Полимеры с разветвленным строением  макромолекул или с затрудненной подвижностью линейных макроцепей образуют аморфно-кристаллическую структуру. Например, полиэтилен низкой плотности, в главных цепях которого присутствуют многочисленные ответвления, может содержать до 70 % аморфной фазы. В аморфно-кристаллических полимерах содержание кристаллической фазы составляет 25-70 %. И кристаллические, и аморфно-кристаллические полимеры могут быть только термопластичными.

Надмолекулярные структуры  в незакристаллизованных аморфных полимерах менее выражены, чем  в кристаллических. В них кристаллическая  НМС либо отсутствует полностью, либо ее содержание измеряется единицами  процента. Аморфная надмолекулярная структура характерна для всех сетчатых полимеров, а также и для ряда широко распространенных термопластов. К ним относятся, например, полиметилметакрилат (оргстекло), поликарбонат, полистирол.

Аморфные полимеры могут  находиться в трех физических состояниях: стеклообразном, высокоэластическом и  вязкотекучем. Полимеры с низкой (ниже комнатной) температурой перехода из стеклообразного в высокоэластическое состояние называются эластомерами, с высокой — пластиками. Характер перехода из одного состояния в другое зависит от химического строения полимера, его физической организации.

 
Особенности полимеров

 

Особые механические свойства:

  • эластичность — способность к высоким обратимым деформациям при относительно небольшой нагрузке (каучуки);
  • малая хрупкость стеклообразных и кристаллических полимеров (пластмассы, органическое стекло);
  • способность макромолекул к ориентации под действием направленного механического поля (используется при изготовлении волокон и плёнок).

Особенности растворов  полимеров:

  • высокая вязкость раствора при малой концентрации полимера;
  • растворение полимера происходит через стадию набухания.

Особые химические свойства:

  • способность резко изменять свои физико-механические свойства под действием малых количеств реагента (вулканизация каучука, дубление кож и т. п.).

Особые свойства полимеров  объясняются не только большой молекулярной массой, но и тем, что макромолекулы  имеют цепное строение и обладают гибкостью.

 

Свойства полимеров

 

В зависимости от химического  состава, строения и взаимного расположения макромолекул свойства полимеров могут меняться в очень широких пределах. Так, 1,4-цис-полибутадиен, построенный из гибких углеводородных цепей, при температуре около 20°С — эластичный материал, при температуре -60°С он переходит в стеклообразное состояние; полиметилметакрилат, построенный из более жестких цепей, при температуре около 20°С — твердый стеклообразный продукт, переходящий в высокоэластическое состояние лишь при 100°С. Целлюлоза — полимер с очень жесткими цепями, соединенными межмолекулярными водородными связями, вообще не может существовать в высокоэластическое состоянии до температуры ее разложения. Большие различия в свойствах полимеров могут наблюдаться даже в том случае, если различия в строении макромолекул на первый взгляд и невелики. Так, стереорегулярный полистирол — кристаллическое вещество с температурой плавления около 235°С, а нестереорегулярный (атактический) вообще не способен кристаллизоваться и размягчается при температуре около 80°С.

 

Классификация полимеров

 

По химическому составу все полимеры подразделяются на органические, элементоорганические, неорганические.

  • Органические полимеры.
  • Элементоорганические полимеры. Они содержат в основной цепи органических радикалов неорганические атомы (Si, Ti, Al), сочетающиеся с органическими радикалами. В природе их нет. Искусственно полученный представитель — кремнийорганические соединения.

Следует отметить, что  в технических материалах часто  используют сочетания разных групп  полимеров. Это композиционныематериалы (например, стеклопластики).

По форме макромолекул полимеры делят на линейные, разветвленные (частный случай — звездообразные), ленточные, плоские, гребнеобразные, полимерные сетки и так далее.

Полимеры подразделяют по полярности (влияющей на растворимость в различных  жидкостях). Полярность звеньев полимера определяется наличием в их составе  диполей — молекул с разобщенным распределением положительных и отрицательных зарядов. В неполярных звеньях дипольные моменты связей атомов взаимно компенсируются. Полимеры, звенья которых обладают значительной полярностью, называют гидрофильными или полярными. Полимеры с неполярными звеньями —неполярными, гидрофобными. Полимеры, содержащие как полярные, так и неполярные звенья, называются амфифильными. Гомополимеры, каждое звено которых содержит как полярные, так и неполярные крупные группы, предложено называтьамфифильными гомополимерами.

По отношению к нагреву полимеры подразделяют на термопластичные и термореактивные. Термопластичные полимеры (полиэтилен, полипропилен, полистирол) при нагреве размягчаются, даже плавятся, а при охлаждении затвердевают. Этот процесс обратим. Термореактивные полимеры при нагреве подвергаются необратимому химическому разрушению без плавления. Молекулы термореактивных полимеров имеют нелинейную структуру, полученную путём сшивки (например,вулканизация) цепных полимерных молекул. Упругие свойства термореактивных полимеров выше, чем у термопластов, однако, термореактивные полимеры практически не обладают текучестью, вследствие чего имеют более низкое напряжение разрушения.

Природные органические полимеры образуются в растительных и животных организмах. Важнейшими из них являютсяполисахариды, белки и нуклеиновые кислоты, из которых в значительной степени состоят тела растений и животных и которые обеспечивают само функционирование жизни на Земле. Считается, что решающим этапом в возникновении жизни на Земле явилось образование из простых органических молекул более сложных — высокомолекулярных

 

Синтетические полимеры. Искусственные полимерные материалы

 

Человек давно использует природные полимерные материалы  в своей жизни. Это кожа, меха, шерсть, шёлк, хлопок и т. п., используемые для изготовления одежды, различные связующие (цемент, известь, глина), образующие при соответствующей обработке трёхмерные полимерные тела, широко используемые как строительные материалы. Однако промышленное производство цепных полимеров началось в начале XX в., хотя предпосылки для этого появились ранее.

Практически сразу же промышленное производство полимеров развивалось в двух направлениях — путём переработки природных органических полимеров в искусственные полимерные материалы и путём получения синтетических полимеров из органических низкомолекулярных соединений.

В первом случае крупнотоннажное производство базируется на целлюлозе. Первый полимерный материал из физически модифицированной целлюлозы — целлулоид — был получен ещё в начале XX в. Крупномасштабное производство простых и сложных эфиров целлюлозы было организовано до и после Второй мировой войны и существует до настоящего времени. На их основе производят плёнки, волокна, лакокрасочные материалы и загустители. Необходимо отметить, что развитие кино и фотографии оказалось возможным лишь благодаря появлению прозрачной плёнки из нитроцеллюлозы.

Производство синтетических  полимеров началось в 1906 г., когда Л. Бакеланд запатентовал так называемую бакелитовую смолу — продукт конденсации фенола и формальдегида, превращающийся при нагревании в трёхмерный полимер. В течение десятилетий он применялся для изготовления корпусов электротехнических приборов, аккумуляторов, телевизоров, розеток и т. п., а в настоящее время чаще используется как связующее и адгезивное вещество.

Благодаря усилиям Генри Форда, перед Первой мировой войной началось бурное развитие автомобильной промышленностисначала на основе натурального, затем также и синтетического каучука. Производство последнего было освоено накануне Второй мировой войны в Советском Союзе, Англии, Германии и США. В эти же годы было освоено промышленное производство полистирола и поливинилхлорида, являющихся прекрасными электроизолирующими материалами, а такжеполиметилметакрилата — без органического стекла под названием «плексиглас» было бы невозможно массовое самолётостроение в годы войны.

После войны возобновилось производство полиамидного волокна и тканей (капрон, нейлон), начатое ещё до войны. В 50-х гг. XX в. было разработано полиэфирное волокно и освоено производство тканей на его основе под названием лавсан илиполиэтилентерефталат. Полипропилен и нитрон — искусственная шерсть из полиакрилонитрила, — замыкают список синтетических волокон, которые использует современный человек для одежды и производственной деятельности. В первом случае эти волокна очень часто сочетаются с натуральными волокнами из целлюлозы или из белка (хлопок, шерсть, шёлк). Эпохальным событием в мире полимеров явилось открытие в середине 50-х годов XX столетия и быстрое промышленное освоение катализаторов Циглера-Натта, что привело к появлению полимерных материалов на основе полиолефинов и, прежде всего, полипропилена и полиэтилена низкого давления (до этого было освоено производство полиэтилена при давлении порядка 1000 атм.), а также стереорегулярных полимеров, способных к кристаллизации. Затем были внедрены в массовое производство полиуретаны — наиболее распространенные герметики, адгезивные и пористые мягкие материалы (поролон), а также полисилоксаны — элементорганические полимеры, обладающие более высокими по сравнению с органическими полимерами термостойкостью и эластичностью.

Информация о работе Полимеры. Полимеризация и поликонденсация