Автор работы: Пользователь скрыл имя, 24 Июня 2013 в 20:23, курсовая работа
Серная кислота – наиболее сильная и самая дешевая кислота. Среди минеральных кислот, производимых химической промышленностью, серная кислота по объему производства и потребления занимает первое место. Серная кислота не дымит, в концентрированном виде не разрушает черные металлы, в то же время является одной из самых сильных кислот, в широком диапазоне температур (от –40…-20 до 260 – 336,5*С) находится в жидком состоянии. Она широко используется в производстве минеральных удобрений, различных солей и кислот, всевозможных органических продуктов, красителей, дымообразующих и взрывчатых веществ и т.д. Серная кислота находит разнообразное применение в нефтяной, металлургической, металлообрабатывающей, текстильной, кожевенной и других отраслях промышленности, используется в качестве водоотталкивающего и осушающего средства, применяется в процессах нейтрализации, травления и т.д. Наиболее важные области применения серной кислоты отражены на схеме.
Скорость реакции
повышается с ростом концентрации кислорода,
поэтому процесс в
Так как реакция окисления SO2 относится к типу экзотермических, температурный режим ее проведения должен приближаться к линии оптимальных температур. На выбор температурного режима дополнительно накладываются два ограничения, связанные со свойствами катализатора. Нижним температурным пределом является температура зажигания ванадиевых катализаторов, составляющая в зависимости от конкретного вида катализатора и состава газа 400 – 440*С. верхний температурный предел составляет 600 – 650*С и определяется тем, что выше этих температур происходит перестройка структуры катализатора, и он теряет свою активность.
В диапазоне 400
– 600*С процесс стремятся
Чаще всего в промышленности используют полочные контактные аппараты с наружным теплообменом. Схема теплообмена предполагает максимальное использование теплоты реакции для подогрева исходного газа и одновременное охлаждение газа между полками.
Одна из важнейших задач, стоящих перед сернокислотной промышленностью, - увеличение степени превращения диоксида серы и снижение его выбросов в атмосферу. Эта задача может быть решена несколькими методами.
Один из наиболее рациональных методов решения этой задачи, повсеместно применяемой в сернокислотной промышленности, - метод двойного контактирования и двойной абсорбции (ДКДА). Для смещения равновесия вправо и увеличения выхода процесса, а также для увеличения скорости процесса процесс проводят по этому методу. Его сущность состоит в том, что реакционную смесь, в которой степень превращения SO2 составляет 90 – 95%, охлаждают и направляют в промежуточный абсорбер для выделения SO3. В оставшемся реакционном газе соотношение O2:SO2 существенно повышается, что приводит к смещению равновесия реакции вправо. Вновь нагретый реакционный газ снова подают в контактный аппарат, где на одном-двух слоях катализатора достигают 95% степени превращения оставшегося SO2.суммарная степень превращения SO2 составляет в таком процессе 99,5% - 99,8 %.
Последней стадией процесса производства серной кислоты контактным способом является абсорбция триоксида серы из газовой смеси и превращение его в серную кислоту.
nSO3 + H2O = H2SO4 + (n-1)SO3+Q………(3)
если n>1, то получается олеум (раствор SO3 в H2SO4)
если n=1 , то получается моногидрат (98,3% H2SO4)
если n<1, то получается разбавленная серная кислота
При выборе абсорбента и условий проведения стадии абсорбции необходимо обеспечить почти 100%-ное извлечение SO3 из газовой фазы. Для полного извлечения SO3 необходимо, чтобы равновесное парциальное давление SO2 над растворителем было ничтожно малым, так как при этом будет велика движущая сила процесса абсорбции. Однако, в качестве абсорбента нельзя использовать и такие растворы, над поверхностью которых велико равновесное парциальное давление паров воды. В этом случае еще не растворенные молекулы SO3 будут реагировать с молекулами воды в газовой фазе с образованием паров серной кислоты и быстро конденсироваться в объеме с образованием мельчайших капель серной кислоты, диспергированных в инертной газовой среде – азоте, т.е. с образованием сернокислотного тумана:
SO3(г) + H2O(г) H2SO4(г) H2SO4(туман) ; Q>0
Туман плохо улавливается в обычной абсорбционной аппаратуре и в основном уносится с отходящими газами в атмосферу, при этом загрязняется окружающая среда и возрастают потери серной кислоты.
Высказанные соображения позволяют решить вопрос о выборе абсорбента. Оптимальным абсорбентом является 98,3%-ная серная кислота (техническое название – моногидрат), соответствующая азеотропному составу. Действительно, над этой кислотой практически нет ни паров воды, ни паров SO3. Протекающий при этом процесс можно условно описать уравнением реакции:
SO3 + nH2SO4 + H2O= (n+1) H2SO4
Использование в качестве поглотителя менее концентрированной серной кислоты может привести к образованию сернокислотного тумана, а над 100%-ной серной кислотой или олеумом в паровой фазе довольно велико равновесное парциальное давление SO3, поэтому он будет абсорбироваться не полностью. Однако если в качестве одного из продуктов процесса необходимо получить олеум, можно совместить абсорбцию олеумом (1-й абсорбер) и абсорбцию 98,3%-ной кислотой (2-й абсорбер).
В принципе при высоких температурах над 98,3%-ной кислотой может быть значительным парциальное давление паров самой кислоты, что также будет снижать степень абсорбции SO3. Ниже 100*С равновесное давление паров H2SO4 очень мало и поэтому может быть достигнута практически 100%-ная степень абсорбции.
Таким образом, для обеспечения высокой степени поглощения следует поддерживать в абсорбере концентрацию серной кислоты, близкую к 98,3%, а температуру ниже 100*С. Однако в процессе абсорбции SO3 происходит закрепление кислоты (повышение ее концентрации) и в силу экзотермичности реакции увеличивается температура. Для уменьшения тормозящего влияния этих явлений абсорбцию ведут так, чтобы концентрация H2SO4 при однократном прохождении абсорбера повышалась только на 1-1,5%, закрепившуюся серную кислоту разбавляют в сборнике до концентрации 98,3%, охлаждают в наружном холодильнике и вновь подают на абсорбцию, обеспечивая высокую кратность циркуляции.
Вариант №3
Стадии производства серной кислоты:
Исходные данные для расчета
Показатель |
Значения |
Степень превращения серы в SO2, % |
92.0 |
Степень превращения SO2 в SO3, % |
99.0 |
Степень абсорбции SO3, % |
99.8 |
Содержание SO2 в газе, поступающем в контактный аппарат, % (по объему) |
8.0 |
Содержание H2SO4 в целевом продукте, % по массе |
92.5 |
Базис расчета, кг H2SO4 |
2000 |
011
012
011 - Сера жидкая
012 - Воздух
23 - SO3 содерж. газ
1.Составляем уравнения по первому узлу:
0.92*N011=N12SO2
N12SO2=N12*0.08
0.92*N011=N12*0.08
0.92*X1=X3*0.08 (1)
2. Составляем уравнения по второму узлу:
а) 0,99*N12SO2=N23SO3
0.99*N12*0.08=N23SO3
0.99*X3*0.08=X4
б) N12*(0.21-0.08)=2N23SO3
X*(0.21-0.08)=2X4 (3)
3.Составляем уравнение по третьему узлу:
а) G302*0.925=2000 базисное уравнение G302=X7
X7*0.925=2000 (4)
б) 0.998*N23SO3=2000/Mr(H2SO4)
0.998*X4=2000/98 (5)
в) N301=N301SO2 + N301N2 + N301SO3 + N301O2
N301SO2=N12SO2*(1-0.99)=N12SO2
N301N2= 0.79*N012
N301SO3=N23SO3*(1-0.998)=0.
N301O2=N12*(0.21-0.08)-1/2*N12
1/2)=0.13/2*N12
N301=N12*0.08*0.01+0.79*N012+
N301=0.0658*N12+0.79*N012+0.
X6=0.0658*X3+0.79*X2+0.002*X1
N012=X2
N301=X6
Но надо учесть , что N12=N012 ,т.е. X2=X3 (7)
6 неизвестных и 7 уравнений. Выбрасываем уравнение (3) и получаем систему уравнений:
0,92*X1=0.08*X3
0.99*0.08*X3=X4
0.925*X7=2000
0.998*X4=20.41
X6=0.0658*X3+0.79*X2+0.002*X4
X3=X2
0.92*X1-0.08*X3=0
0.0792*X3-X4=0
X7=2162.2
X4=20.45
0.8558*X3+0.002*X4- X6=0
0.92*X1-0.08*X3=0
0.0792*X3-20.45=0
X7=2162.2
X4=20.45
0.8558*X3+0.002*20.45-X6=0
0.92*X1-0.08*X3=0
X3=257.23
X7=2162.2
X4=20.45
0.8558*X3+0.041-X6=0
0.92*X1=0.08*257.23
X3=257.23
X7=2162.2
X4=20.45
0.8558*257.23+0.041-X6=0
X1=22.37=N011
X3=257.23=X2=N12=N012
X7=2162.2=G301
X4=20.45=N23SO3
X6=220.18=N301
1.Количество целевого продукта:
X7=G301=2162.2 кг 92.5% серной кислоты
2. Расход серы:
X1=N011=22.37 кмоль
ms=Ns*MS=22.37*32=715.84 кг
GSнач=715,84/0,92=778,1 кг было введено в систему
3. Расход воздуха:
X2=X3=N012=257.23 кмоль
Gвозд=Nвозд*Mвозд=257,23*29=
4.Определение расхода кислорода и азота
GO2=7459,67*0,21=1566,7 кг
GN2=7459,67*0,79=5893,1 кг
X3=N12=257.23 кмоль
N12SO2=257.23*0.08=20.58 кмоль
GSO2=NSO2*MSO2=20.58*64=1317 кг
X4=N23SO3=20.45 кмоль
GSO3=NSO3*MSO3=20.45*80=1636 кг
G03=G301*MH2O/MH2SO4=2162.2*
X6=N301=220.18 кмоль
G301=G301SO2+G301N2+G301SO3+G3
0.002*1636+0.065*7459.67=13.