Автор работы: Пользователь скрыл имя, 22 Сентября 2015 в 18:47, курсовая работа
Цель курсовой работы: Изучение почвенных ферментов и ферментативной активности почв.
В соответствии с целью исследования были поставлены следующие задачи:
Дать общие представления о почвенных ферментах и ферментативной активности почв.
Рассмотреть методологические подходы к определению ферментативной активности почв.
Определить влияние различных природных факторов на ферментативную активность почв
Изучить вопрос о наличии и смене сообществ микроорганизмов в почвах
Перечислить и охарактеризовать методы исследования активности почвенных ферментов.
Трансферазы называют ферментами переноса. Они катализируют перенос отдельных радикалов, частей молекул и целых молекул с одних соединений на другие. Реакции переноса обычно идут в две фазы. На первой фазе фермент отщепляет атомную группировку от участвующего в реакции вещества и образует с нею комплексное соединение. На второй фазе фермент катализирует присоединение группировки к другому веществу, участвующему в реакции, а сам освобождается в неизменном состоянии. Класс трансфераз насчитывает около 500 индивидуальных ферментов. В зависимости от того, какие группировки или радикалы переносят трансферазы, различают фосфотрансферазы, аминотрансферазы, гликозилтрансферазы, ацилтрансферазы, метилтрансферазы и др.
Фосфотрансферазы (киназы) – ферменты, катализирующие перенос остатков фосфорной кислоты (Н2Р03). Донором фосфатных остатков, как правило, является АТФ. Перенос фосфатных групп производится на спиртовые, карбоксильные, азотсодержащие, фосфорсодержащие и другие группы органических соединений. К фосфотрансферазам относится повсеместно распространенная гексокиназа – фермент, ускоряющий перенос остатка фосфорной кислоты от молекулы АТФ к глюкозе. С этой реакции начинается превращение глюкозы в другие соединения.
Гликозилтрансферазы ускоряют реакции переноса гликозильных остатков к молекулам моносахаридов, полисахаридов или других веществ. Это ферменты, обеспечивающие реакции синтеза новых молекул углеводов, коферментами гликозилтрансфераз являются нуклеозиддифосфатсахара (НДФ-сахара). С них в процессе синтеза олигосахаридов гликозильный остаток переносится на моносахарид. В настоящее время известно около пятидесяти НДФ-сахаров. Они широко распространены в природе, синтезируются из фосфорных эфиров моносахаридов и соответствующих нуклеозидтрифосфатов.
Ацилтрансферазы переносят остатки уксусной кислоты СН3СО-, а также остатки других жирных кислот на аминокислоты, амины, спирты и другие соединения. Это двухкомпонентные ферменты, в состав которых входит кофермент А. Источником ацильных групп является ацилкоэнзим А, который можно рассматривать как активную группу ацилтрансфераз. При переносе остатков уксусной кислоты в реакции участвует ацетил коэнзим А.
К классу гидролаз относятся ферменты, катализирующие гидролиз, а иногда и синтез сложных органических соединений с участием воды.
Подкласс эстераз включает ферменты, ускоряющие реакции гидролиза сложных эфиров, спиртов с органическими и неорганическими кислотами.
Важнейшими подподклассами эстераз являются гидролазы эфиров карбоновых кислот и фосфатазы. Реакции гидролиза жиров (триглицеридов), в результате которых освобождаются глицирин и высшие жирные кислоты, ускоряются гидролазой эфиров глицерина липазой. Различают простые липазы, которые катализируют освобождение высших жирных кислот из свободных триглицеридов, и липопротеинлипазы, осуществляющие гидролиз связанных с белками липидов. Липазы - однокомпонентные белки с молекулярным весом от 48 тыс. до 60 тыс. Хорошо изучена липаза дрожжей. Ее полипептидная цепь состоит из 430 аминокислотных остатков и сложена в глобулу, в центре которой находится активный центр фермента. Ведущую роль в активном центре липазы играют радикалы гистидина, серина, дикарбоновых кислот и изолейцина.
Активность липаз регулируется путем их фосфорилирования- дефосфорилирования. Активные липазы фосфорилированы, не активные дефосфорилированы.
Фосфатазы катализируют гидролиз фосфорных эфиров. Широко распространены фосфатазы, действующие на сложные эфиры фосфорной кислоты и углеводов. К таким соединениям относятся, например, глюкозо-6-фосфат, глюкозо-1-фосфатаза, фруктозо-1,6-дифосфат и др. Соответствующие ферменты носят названия глюкозо-6-фосфатаза, глюкозо-1-фосфатаза и т. д. Они катализируют отщепление остатка фосфорной кислоты от фосфорных эфиров:
Фосфатазы фосфодиэфиров – дезоксирибонуклеаза и рибонуклеаза катализируют расщепление ДНК и РНК до свободных нуклеотидиов.
К подклассу гидролаз относятся гликозидазы ускоряющие реакции гидролиза гликозидов. Кроме гликозидов, содержащих в качестве агликонов остатки одноатомных спиртов, субстратами, на которые действуют гликозидазы, являются олиго- и полисахариды. Из действующих на олигосахариды гликозидаз важнейшими являются мальтоза и сахароза. Они осуществляют гидролиз мальтозы и сахарозы.
Из гликозидаз, действующих на полисахариды, наибольшее значение имеют амилазы. Характерная особенность амилаз – отсутствие абсолютной специфичности действия. Все амилазы – металлопротеины, содержат Zn2+ и Са2+. Активные центры амилаз образованы радикалами гистидина, аспарагиновой и глутаминовой кислот, а также тирозина. Последний выполняет функцию связывания субстрата, а первые трикаталитическую. Амилазы ускоряют реакции гидролиза гликозильных связей в молекуле крахмала с образованием глюкозы, мальтозы или олигосахаридов.
Немаловажное значение имеет целлюлаза, катализирующая расщепление целлюлозы, инулаза, расщепляющая полисахарид инулин, аглюкозидаза, превращающая дисахарид мальтозу в две молекулы глюкозы. Некоторые гликозидазы могут катализировать реакции переноса гликозильных остатков, в этом случае их называют трансгликозидазами.
Протеазы (пептидгидролазы) катализируют гидролитическое расщепление пептидных CO-NH-связей в белках или пептидах с образованием пептидов меньшей молекулярной массы или свободных аминокислот. Среди пептидгидролаз различают эндопептидазы (протеиназы), катализирующие гидролиз внутренних связей в белковой молекуле, и экзопептидазы (пептидазы), обеспечивающие отщепление от пептидной цепи свободных аминокислот.
Протеиназы делят на четыре подкласса.
1. Сериновые протеиназы,
в состав активнового центра
этих ферментов входит остаток
серина. Последовательность
2. Тиоловые (цистеиновые) протеиназы, имеют в активном центре остаток цистеина, энзиматической активностью обладают сульфгидрильные группы и ионизированная карбоксильная группа.
3. Кислые (карбоксильные) протеиназы, оптимум рН<5, содержат радикалы дикарбоновых кислот в активном центре.
4. Металлпротеиназы, каталитическое
действие их обусловлено
Важной особенностью протеиназ является селективный характер их действия на пептидные связи в белковой молекуле. В результате индивидуальный белок под воздействием определенной протеиназы расщепляется всегда на строго ограниченное число пептидов.
5. Пептидгидролазы, отщепляющие аминокислоты от пептида, начиная с аминокислоты, обладающей свободной NН2-группой, называются аминопептидазами, имеющие свободную СООН группу – карбоксипептидазами. Завершают гидролиз белка дипептидазы, расщепляя дипептиды на аминокислоты.
6. Амидазы катализируют гидролитическое расщепление связи между углеродом и азотом: дезаминирование аминов. К этой группе ферментов относится уреаза, которая осуществляет гидролитическое расщепление мочевины. окислительный фермент
7. Уреаза - однокомпонентный фермент (М=480 тыс.). Молекула представляет собой глобулу и состоит из восьми равных субъединиц. Обладает абсолютной субстратной специфичностью, действует только на мочевину [1, с. 34].
Следует отметить, что чтобы обнаружить в почве свободные ферменты, нужно прежде всего освободить ее от живых организмов, т. е. произвести полную или частичную стерилизацию. Идеальный фактор, стерилизующий почву для нужд энзимологии, должен убивать живые клетки, не нарушая их клеточной структуры, и в то же время, не влиять на сами ферменты. Трудно сказать, все ли применяемые в настоящее время методы стерилизации отвечают этим требованиям. Чаще всего почву для нужд энзимологии стерилизуют, добавляя в качестве антисептика толуол, путем обработки почвы окисью этилена или, что теперь практикуется все чаще, убивая микроорганизмы разного рода ионизирующими излучениями. Дальнейшая техника определения каталитических свойств почвы не отличается от методов определения активности ферментов растительного или животного происхождения. К почве добавляют определенную концентрацию субстрата для фермента и после инкубации изучают продукты реакции. Анализы многих почв, проведенные этим способом, показали, что в них содержатся свободные ферменты, обладающие каталитической активностью.
1.2 Ферментативная активность почв
Ферментативная активность почв [от лат. Fermentum – закваска] –способность почвы проявлять каталитическое воздействие на процессы превращения экзогенных и собственных органических и минеральных соединений благодаря имеющимся в ней ферментам. Характеризуя ферментативную активность почв, имеют в виду суммарный показатель активности. Ферментативная активность различных почв неодинакова и связана с их генетическими особенностями и комплексом взаимодействующих экологических факторов. Уровень ферментативной активности почв определяется активностью различных ферментов (инвертазы, протеаз, уреазы, дегидрогеназ, каталазы, фосфатаз), выражаемой количеством разложенного субстрата за единицу времени на 1 г почвы.
Биокаталитическая активность почв зависит от степени обогащенности их микроорганизмами и от типа почв. Активность ферментов изменяется по генетическим горизонтам, которые отличаются по содержанию гумуса, типам реакций, окислительно-восстановительным потенциалом и другими показателями по профилю.
В целинных лесных почвах интенсивность ферментативных реакций в основном определяют горизонты лесной подстилки, а в пахотных – пахотные слои. Все биологически менее активные генетические горизонты, находящиеся под горизонтами А или Ап, имеют низкую активность ферментов. Активность их незначительно возрастает при окультуривании почв. После освоения лесных почв под пашню ферментативная активность образованного пахотного горизонта по сравнению с лесной подстилкой резко снижается, но по мере его окультуривания повышается и в сильно окультуренных почвах приближается или превышает показатели лесной подстилки.
Ферментативная активность отражает состояние плодородия почв и внутренние изменения, происходящие при сельскохозяйственном использовании и повышении уровня культуры земледелия. Эти изменения обнаруживаются как при вовлечении целинных и лесных почв в культуру, так и при различных приемах их использования [3, с. 112].
По всей Беларуси в пахотных почвах ежегодно теряется до 0,9 т/га гумуса. В результате эрозии ежегодно безвозвратно уносится с полей 0,57 т/га гумуса. Причинами дегумификации почв являются усиление минерализации почвенного органического вещества, отставание процессов новообразования гумуса от минерализации в связи с недостаточным поступлением в почву органических удобрений и снижения ферментативной активности почвы [2, с. 93].
Биохимические превращения органического вещества почвы происходят в результате микробиологической деятельности под влиянием ферментов.
Особую роль играют ферменты в жизнедеятельности животных, растений и микроорганизмов. Почвенные ферменты участвуют при распаде растительных, животных и микробных остатков, а также синтезе гумуса. В результате питательные вещества из трудно усвояемых соединений переходят в легко доступные формы для растений и микроорганизмов. Ферменты отличаются высокой активностью, строгой специфичностью действия и большой зависимостью от различных условий внешней среды. Благодаря каталитической функции они обеспечивают быстрое протекание в организме или вне его огромного числа химических реакций [4, с. 89].
Совместно с другими критериями ферментативная активность почв может служить надёжным диагностическим показателем для выяснения степени окультуренности почв. В результате исследований [4, с. 91] установлена зависимость между активностью микробиологических и ферментативных процессов и проведением мероприятий, повышающих плодородие почв. Обработка почв, внесение удобрений существенно изменяют экологическую обстановку развития микроорганизмов.
В настоящее время в биологических объектах обнаружено несколько тысяч индивидуальных ферментов, а несколько сотен из них выделено и изучено. Известно, что живая клетка может содержать до 1000 различных ферментов, каждый из которых ускоряет ту или иную химическую реакцию [5, с. 29].
Интерес к применению ферментов вызван еще и тем, что постоянно возрастают требования по увеличению безопасности технологических процессов. Присутствуя во всех биологических системах, являясь одновременно продуктами и инструментами этих систем, ферменты синтезируются и функционируют при физиологических условиях (pH, температура, давление, присутствие неорганических ионов), после чего легко выводятся, подвергаясь разрушению до аминокислот. Как продукты, так и отходы большинства процессов, протекающих с участием ферментов, являются нетоксичными и легко разрушаемыми. Кроме того, во многих случаях, ферменты, используемые в промышленности, получают экологически безопасным путем. От небиологических катализаторов ферменты отличают не только безопасность и повышенная способность к биодеградации, но и специфичность действия, мягкие условия протекания реакций и высокая эффективность. Эффективность и специфичность действия ферментов позволяет получать целевые продукты с высоким выходом, что делает использование ферментов в промышленности экономически выгодным. Применение ферментов способствует сокращению расхода воды и энергии в технологических процессах, уменьшает выбросы в атмосферу CO2, снижает риск загрязнения окружающей среды побочными продуктами технологических циклов [1, с. 37].