Ферментативная активность почв

Автор работы: Пользователь скрыл имя, 22 Сентября 2015 в 18:47, курсовая работа

Краткое описание

Цель курсовой работы: Изучение почвенных ферментов и ферментативной активности почв.
В соответствии с целью исследования были поставлены следующие задачи:
Дать общие представления о почвенных ферментах и ферментативной активности почв.
Рассмотреть методологические подходы к определению ферментативной активности почв.
Определить влияние различных природных факторов на ферментативную активность почв
Изучить вопрос о наличии и смене сообществ микроорганизмов в почвах
Перечислить и охарактеризовать методы исследования активности почвенных ферментов.

Вложенные файлы: 1 файл

Курсовая работа.doc

— 216.00 Кб (Скачать файл)

Применением передовой агротехники можно изменять в благоприятную сторону микробиологические процессы не только пахотного, но и подпахотного слоев почвы.

При непосредственном участии внеклеточных ферментов происходит разложение органических соединений почвы. Так, протеолитические ферменты расщепляют белковые вещества и до аминокислот.

Уреаза разлагает мочевину до СО2 и NH3. Образующийся аммиак и аммонийные соли служат источником азотного питания растений и микроорганизмов.

Инвертаза и амилаза участвуют в расщеплении углеводов. Ферменты группы фосфатов разлагают фосфорорганические соединения почвы и играют важную роль в фосфатном режиме последней.

Для характеристики общей ферментативной активности почвы обычно используют наиболее распространенные ферменты, свойственные подавляющему большинству почвенной микрофлоры – инвертазу, каталазу, протеазу и другие [4, с. 83].

В условиях нашей республики проводилось немало исследований

[16, с. 115] по изучению изменения уровня плодородия и ферментативной активности почв при антропогенном воздействии, однако полученные данные не дают исчерпывающий ответ на характер изменений из-за сложности сопоставления результатов в виду различия условий проведения опытов и методик исследований.

В связи с этим поиск оптимального решения проблемы улучшения гумусного состояния почвы и ее ферментативной активности в конкретных почвенно-климатических условиях на основе разработки ресурсосберегающих приемов основной обработки почвы¸ применения почвозащитных севооборотов, способствующих сохранению структуры, предотвращению переуплотнения почвы и улучшению их качественного состояния и восстановлению плодородия почв при минимальных затратах, весьма актуален.

 

 

1.3 Методологические  подходы к определению ферментативной активности почв

 

 

1.3.1 Выделение  экспериментального участка и картографирование

 

 

Пробная площадка – часть исследуемой территории, характеризующаяся сходными условиями (рельефом, однородностью структуры почвы и растительного покрова, характером хозяйственного использования).

Пробная площадка должна располагаться на типичном для изучаемой территории месте. На площади 100 кв. м закладывается одна пробная площадка размером  25 м. При неоднородности рельефа площадки выбирают по элементам рельефа.

Намечают предварительный план закладки основных разрезов и полуразрезов с таким расчетом, чтобы они характеризовали почвы всех встречающихся форм рельефа местности и разностей почвенного покрова [5, с. 36].

Способ петель применяют на территориях со сложным рельефом и густой географической сетью. При этом способе исследуемый участок расчленяют на отдельные элементарные секторы с учетом особенностей изменения рельефа или гидрографической сети. Сектор обследуют из одного центра посредством совершения петлеобразных маршрутов в радиальном направлении.

С учетом особенностей рельефа и гидрографической сети на одном конкретном участке маршруты обследования можно планировать комбинированным способом, т.е. часть участка обследуют способом параллельных пересечений территории, а часть способом петель.

По маршрутам намечают точки заложения разрезов с таким расчетом, чтобы были охвачены все основные разности рельефа и растительности, т.е. расстояния между разрезами не лимитируются, поэтому в одних, как правило, сложных по рельефу местах возможно сгущение разрезов, а на других, относительно однородных, участках расположение разрезов может быть редким.

Далее идет проведение работ, связанных с почвенным картографированием и детальным изучением почв, начинают с рекогносцировочного обследования участка (квартала). Во время рекогносцировочного обследования знакомятся с границами участка и в целом с объектом исследований, который обходят по просекам, визирам, дорогам. В наиболее характерных местах закладывают разрезы, место заложения которых наносят на план. По результатам рекогносцировочных обследований окончательно корректируют маршруты и места закладки почвенных разрезов.

После рекогносцировочного обследования приступают к собственно съемке, при выполнении которой необходимо иметь план заложения почвенных разрезов и чистую копию абриса таксационного описания. Общее представление о почвенных разностях и первоначальные засечки границ почвенных контуров получают на основе изучения основных и контрольных разрезов. Уточнение границ распространения почвенного контура производят с помощью прикопок. При этом в полевом дневнике для каждого разреза заполняют бланк описания почвенного разреза. Полевое изучение распространения почв проводят после закладки и привязки разрезов для установления классификационной принадлежности данной почвы. По результатам полевой оценки почвенного покрова и всех остальных элементов ландшафта в качестве почвенного контура выделяют обособленный, относительно однородный или однообразно-пестрый участок [6, с. 48].

Основой для выделения границ между контурами различных почв является выявление закономерностей между почвами, рельефом и растительностью. Изменения в факторах почвообразования приводят к изменению почвенного покрова. При ясном изменении рельефа, растительных формаций и почвообразующих пород границы почвенных разностей совпадают с границами на местности. В свою очередь, легкость фиксации границ на карте и точность выделения почвенных контуров зависят от точности топографической основы. Однако в природе чаще всего приходится сталкиваться с неясными границами, постепенным переходом. В данном случае для установления границ почвенных контуров требуется заложение большого числа прикопок, а также богатый практический опыт и хорошая наблюдательность. При выполнении собственно съемки в полевых условиях, на основе скопированного из таксационного планшета плана, составляют абрис почв исследуемого участка [5, с. 68].

Следует помнить, что строгих границ между почвенными разностями в природе не существует, так как смена одной почвенной разности другой происходит постепенно путем накопления одних признаков и утраты других. Поэтому почвенная съемка позволяет лишь в большей или меньшей мере передать схематические очертания распространения почвенных контуров, а точность выделения их границ зависит от масштаба съемки, типа почвы и других условий. Минимальные размеры почвенных контуров, подлежащих обязательному выделению на почвенной карте, определены техническими нормативами.

 

 

1.3.2 Особенности  отбора и подготовки образцов  почв к анализу

 

 

Чтобы правильно определить содержание того или иного вещества в почве, все агрохимические анализы должны выполняться безукоризненно точно и аккуратно. Однако даже очень тщательный анализ даст ненадежные результаты при неправильном отборе проб почвы.

Поскольку навеску для анализа берут очень маленькую, а результаты определения должны дать объективную характеристику большим количествам материала, обращают внимание на устранение неоднородности при отборе проб почвы. Усреднение почвенного образца достигается поэтапным отбором исходной, лабораторной и аналитической проб.

Смешанная исходная проба должна быть составлена из отдельных образцов (первоначальных проб), отобранных в пределах одной почвенной разности. Если участок имеет комплексный почвенный покров, то единой средней пробы взять нельзя. Их должно быть столько, сколько имеется почвенных разностей [7, с. 18].

В зависимости от конфигурации участка расположение точек для отбора первоначальных проб на нем бывает различным. На узком, вытянутом в длину участке их можно разместить вдоль (по средине) него. На широком, близком к квадрату, участке лучше шахматное расположение мест взятия проб. На больших площадях применяется отбор почвенных проб вдоль длины участка по его средине, в количестве до 20 шт.

Взятую исходную пробу почвы тщательно перемешать на куске брезента, последовательно усредняют и уменьшают до нужного объема, затем высыпают в чистый мешочек, или коробку. Это лабораторная проба, её масса составляет около 400 г.

В коробку с лабораторной пробой сверху кладут фанерную или картонную этикетку, написанную простым карандашом, с указанием:

1. Наименования  объекта.

2. Названия участка.

3. Номера делянки.

4. Глубины отбора.

5. Номера образца.

6. Фамилии руководившего  работой или бравшего образец.

7. Даты проведения работы.

Такую же запись одновременно делают и в журнале.

Доставленный с участка образец почвы в лаборатории высыпают на плотную бумагу или лист чистой фанеры и разминают руками все слежавшиеся комья. Потом выбирают пинцетом посторонние включения, хорошо перемешивают почву, слегка измельчают ее. После такой подготовки лабораторной пробы ее вновь рассыпают для доведения до воздушно – сухого состояния, затем измельчают и пропускают через сито с отверстиями 2мм.

Помещение для сушки почвы должно быть сухим и защищенным от доступа аммиака, паров кислот и других газов [7, с. 20].

Для определения ферментативной активности обычно берут почву, подсушенную на открытом воздухе; влажные образцы следует подсушивать в лаборатории при комнатной температуре. Необходимо следить за тем, чтобы образец не содержал неразложившихся растительных остатков. Комки почвы измельчают и просеивают через сито с ячеями размером 1 мм. При изучении ферментативной активности свежего (влажного) образца полному удалению растительных остатков следует уделять еще больше внимания. Одновременно с изучением активности определяют и влажность почвы, полученный результат пересчитывают на 1 г абсолютно сухой почвы.

 

 

 

1.4 Влияние  различных факторов на ферментативную активность почв

 

 

Важным фактором, от которого зависит скорость ферментативной реакции (равно каталитическая активность фермента) является температура, влияние которой показано на рисунке 1. Из рисунка видно, что с повышением температуры до определенной величины скорость реакции увеличивается. Это можно объяснить тем, что с повышением температуры движение молекул ускоряется и у молекул реагирующих веществ оказывается больше возможности столкнуться друг с другом. Это увеличивает вероятность того, что реакция между ними произойдет. Температура, обеспечивающая наибольшую скорость реакции, называется оптимальной  температурой [8, с. 49].

Каждый фермент имеет свою оптимальную температуру. В общем для ферментов животного происхождения она лежит между 37 и 40°С, а растительного – между 40 и 50°С. Однако есть и исключения: α-амилаза из проросшего зерна имеет оптимальную температуру при 60°С, а каталаза – в пределах 0-10°С. При повышении температуры сверх оптимальной скорость ферментативной реакции снижается, хотя частота столкновений молекул увеличивается. Происходит это вследствие денатурации, т.е. потери ферментом нативного состояния. При температуре выше 80°С большинство ферментов полностью теряют свою каталитическую активность.

Снижение скорости ферментативной реакции при температурах, превышающих оптимальную, зависит от денатурации фермента. Поэтому важным показателем, характеризующим отношение фермента к температуре, является его термолабильность, т.е. скорость инактивации самого фермента при повышении температуры.

 

 

Рисунок 1 - Влияние температуры на скорость гидролиза

крахмала амилазой

 

При низких температурах (0°С и ниже) каталитическая активность ферментов падает почти до нуля, но денатурация при этом не происходит. С повышением температуры их каталитическая активность вновь восстанавливается.

Также на ферментативную активность почв влияют влажность, содержание микроорганизмов, экологическое состояние почв.

 

 

1.5 Смена  сообществ микроорганизмов в  почвах

 

 

Микроорганизмы почвы очень многочисленны и разнообразны. Среди них имеются бактерии, актиномицеты, микроскопические грибы и водоросли, протозоа и близкие к этим группам живые существа.

Биологический круговорот в почве осуществляется с участием разных групп микроорганизмов. В зависимости от типа почвы содержание микроорганизмов колеблется. В садовых, огородных, пахотных почвах их насчитывается от одного миллиона до нескольких миллиардов микроорганизмов в 1 г почвы. В почве каждого садового участка присутствуют свои микроорганизмы. Они участвуют своей биомассой в накоплении органического вещества почвы. Они выполняют огромную роль в образовании доступных форм минерального питания растений. Исключительно велико значение микроорганизмов в накоплении биологически активных веществ в почве, таких как ауксины, гиббереллины, витамины, аминокислоты, стимулирующие рост и развитие растений. Микроорганизмы, образуют слизи полисахаридной природы, а также большое количество нитей грибов, принимают активное участие в формировании структуры почвы, склеивании пылеватых почвенных частиц в агрегаты, чем улучшают водно-воздушный режим почвы.

Биологическая активность почвы, численность и активность почвенных микроорганизмов тесно связаны с содержанием и составом органического вещества. В тоже время с деятельностью микроорганизмов тесно связаны такие важнейшие процессы формирования плодородия почв, как минерализация растительных остатков, гумификация, динамика элементов минерального питания, реакция почвенного раствора, превращения различных загрязняющих веществ в почве, степень накопления ядохимикатов в растениях, накопление токсических веществ в почве и явление почвоутомления. Велика санитарно-гигиеническая роль микроорганизмов и в трансформации и обезвреживании соединений тяжелых металлов [7, с. 50].

Перспективным направлением восстановления и поддержания плодородия и биологической интенсификации земледелия считается применение продуктов переработки органических отходов с участием вермикомпостов дождевых червей, находящихся в симбиозе с микроорганизмами. В естественных почвах разложение опада осуществляют дождевые черви, копрофаги и другие организмы. Но в этом процессе участвуют и микроорганизмы. В кишечнике червей для них создаются более благоприятные условия для выполнения любых функций, чем в почве. Дождевые черви в союзе с микроорганизмами превращают различные органические отходы в высокоэффективные биологические удобрения с хорошей структурой, обогащенные макро- и микроэлементами, ферментами, активной микрофлорой, обеспечивающей пролонгированное (длительное, постепенное) действие на растения [8, с. 95].

Информация о работе Ферментативная активность почв