Автор работы: Пользователь скрыл имя, 29 Июня 2014 в 18:14, курсовая работа
Целью настоящей работы явился подбор заданий по химической термодинамике, адаптация их к требованиям химических олимпиад для школьников, а так же разработка методики их решения с учетом межпредметных связей с математикой и физикой.
Введение
Глава 1. Первый закон термодинамики
1.1 Вопросы и задания
1.2 Примеры
1.3 Задачи
Глава 2. Приложение первого закона термодинамики к химии. Термохимия
2.1 Вопросы и задания
2.2 Примеры
2.3 Задачи
Глава 3. Второй закон термодинамики. Энтропия
3.1 Вопросы и задания
3.2 Примеры
3.3 Задачи
Глава 4. Термодинамические потенциалы
4.1 Примеры
4.2 Задачи
Литература
а) системы, считая СО2 идеальным газом,
б) окружающей среды,
в) Вселенной.
(DSсист=27,4Дж*К-1,DSокр = -6,94Дж*К-1, DSвсел=20,46Дж*К-1)
3-6. Найдите изменение энтропии газа газа и окружающей среды, если n молей идеального газа расширяются изотермически от давления р1 до давления р2: а) обратимо; б) против внешнего давления р < р2.
(а) DSгаз = nRln(p1/p2), DSокр = -nRln(p1/p2),
б) DSгаз = nRln(p1/p2), DSокр = nRр(1/p1 - 1/p2))
3-7. Рассчитайте изменение энтропии 1000 г воды в результате ее замерзания при -5°С. Теплота плавления льда при 0°С равна 6008 Дж*моль-1. Теплоемкость льда и воды равны 34,7 и 75,3 Дж*К-1*моль-1, соответственно. Объясните, почему энтропия при замерзании уменьшается, хотя процесс самопроизвольный. (-1181Дж/К)
3-8. Вычислите изменение энтропии в процессе затвердения 1 моль переохлажденного бензола при 268 К, если при 278 К DНпл (бензола)=9956Дж*моль-1,Ср бензола(ж)=127,3Дж*К-1*моль-1,
Ср бензола(тв) = 123,6 Дж*К-1*моль-1, Р = cоnst = 1,01*105 Па. (35,61 Дж*К-1*моль-1)
3-9. Определите изменение энтропии, если 100*10-3 кг воды, взятой при 273 К, превращается в пар при390 К. Удельная теплота испарения воды при 373 К равна 2263,8*10-3 Дж*кг-1; удельная теплоемкость жидкой воды 4,2 Дж*кг-1*К-1; удельная теплоемкость пара при постоянном давлении 2,0*10-3 Дж*кг-1*К-1. (142 Дж*К-1*моль-1)
3-10. Азот (0,001 м3) смешан с 0,002 м3 кислорода при 27°С и давлении 1,013*105 Па. Найти общее изменение энтропии системы. (0,645 Дж)
3-11. В двух сообщающихся сосудах, разделенных перегородкой, находятся 1 моль азота и 2 моль кислорода. Перегородку вынимают, газы смешиваются. Рассчитайте общее изменение энтропии, если исходные температуры и давления одинаковы, а объемы различны; VN2 = 1 л, VO2 = 2 л. Конечное давление смеси равно исходному давлению газа. (15,876 Дж*К-1*моль-1)
3-12. В
двух сосудах одинаковой
3-13. Смешали 1 моль аргона, взятого при TAr = 293 К, с 2 моль азота, взятого при ТN2 = 323 К. Исходные давления компонентов и конечное давление смеси одинаковы. Вычислите температурную составляющую энтропии смешения. Теплоемкость аргона равна 20,8 Дж*К-1*моль-1 и азота 29,4 Дж*К-1*моль-1. (0,033 Дж*К-1*моль-1)
Глава 4. Термодинамические потенциалы
4.1 Примеры
Пример 4-1
Два моля гелия (идеальный газ, мольная теплоемкость
Ср = 5/2R) нагревают от 100 до 200°С при р = 1 атм. Вычислите изменение энергии Гиббса в этом процессе, если известно значение энтропии гелия,
S°373 = 131,7 Дж*К-1*моль-1. Можно ли считать этот процесс самопроизвольным?
Решение:
Изменение энергии Гиббса при нагревании от 373 до 473 К можно найти, проинтегрировав частную производную по температуре:
Зависимость энтропии от температуры при постоянном давлении определяется изобарной теплоемкостью:
Интегрирование этого выражения от 373 К до Т дает:
Подставляя это выражение в интеграл от энтропии, находим:
Процесс нагревания не обязан быть самопроизвольный, т.к. уменьшение энергии Гиббса служит критерием самопроизвольного протекания процесса только при Т = const и р = const.
Ответ: -26850 Дж.
Пример 4-2
Рассчитайте изменение энергии Гиббса в реакции:
СО + 1/2О2 = СО2
при температуре 500 К и парциальных давлениях 3 бар. Будет ли эта реакция самопроизвольной при данных условиях? Газы считать идеальными. Необходимые данные возьмите из справочника.
Решение:
Термодинамические данные при температуре 298 К и стандартном давлении 1 бар сведем в таблицу:
Вещество |
Энтальпия образования DfН°298 , кДж*моль-1 |
Энтропия S°298 , Дж*К-1*моль-1 |
Теплоемкость Ср, Дж*К-1*моль-1 |
СО |
-110,5 |
197,6 |
29,14 |
О2 |
0 |
205,0 |
29,40 |
СО2 |
-393,5 |
213,7 |
34,57 |
Реакция |
DrН°298 , кДж/моль |
DrS°298, Дж*К-1*моль-1 |
DrСp, Дж*К-1*моль-1 |
СО + ½ О2 = СО2 |
-283,0 |
-86,4 |
-9,27 |
Примем, что DrСp = соnst. Изменения термодинамических функций в результате реакций рассчитаны как разность функций реагентов и продуктов:
Df = f(СО2) - f(СО) – 1/2 f(О2).
Стандартный тепловой эффект реакции при 500 К можно рассчитать по уравнению Кирхгофа в интегральной форме:
DrН°500 = -283000 + (-9,27)(500 – 298) = -284,9 кДж*моль-1
Стандартное изменение энтропии в реакции при 500 К можно рассчитать по формуле:
DrS°500=(-86,4+(-9,27)ln(500/
=-91,2Дж*К-1*моль-1
Стандартное изменение энергии Гиббса при 500 К:
DrG°500 = DrН°500 - 500DrS°500,
DrG°500 = (-284900 – 500(-91,2)) кДж*моль-1=-239,3кДж*моль-1.
Рассчитаем изменение энергии Гиббса при парциальных давлениях 3 атм:
DrG(р2) = - 240200 + (-0,5)8,31*500*ln(3) = -242,5 кДж*моль-1.
Эта реакция может протекать самопроизвольно при данных условиях.
Ответ: DrG = -242,5 кДж*моль-1.
4.2 Задачи
(DН = -36,66 кДж, DU = -26,19 кДж, DF = 249,4 кДж,
DG = 238,9 кДж, DS = -27,72 Дж*К-1)
S°(O2) = 49,0 кал*К-1*моль-1, DfН°(Н2О(ж)) = -68,3 ккал*моль-1, S°(Сl2) = 53,3 кал*К-1*моль-1, S°(НCl) = 44,6 кал*К-1*моль-1,
S°(Н2O(ж)) = 49,0 кал*К-1*моль-1.
(DG° = -22,2 ккал*моль-1)
0,7*10-2 кг N2 при 300 К и давлении от 5,05*104 до 3,031*105 Па (считать азот идеальным газом).
С(графит) + 2Н2(г) = СН4(г).
Определите DН°298 из следующих термохимических уравнений:
СН4(г) + 2О2(г) = СО2(г) + 2Н2О(ж) + DН°298,
СО2(г) = С(графит) + О2(г) - DН°298,
2Н2О(ж) = 2Н2(г) + О2(г) - 2DН°298.
Значение DS°298 вычислите с помощью постулата Планка.
СаСО3(тв) = СаО(тв) + СО2(г).
Теплоемкости веществ считать постоянными.
(DrG°973 = 24,4 кДж*моль-1, DrF°973 = 16,3 кДж*моль-1)
Вещество |
N2 |
Н2 |
NH3 |
Сp,298, Дж*К-1*моль-1 |
29,1 |
28,8 |
35,7 |
S°298 , Дж*К-1*моль-1 |
191,5 |
130,6 |
192,5 |
Считать, что теплоемкости в указанном интервале температур постоянны.
(DfG°298(NH3) = -16,7 кДж*моль-1, DrG°400(NH3) = -6,19 кДж*моль-1)
Литература
1) Г.С. Каретников, И.В. Кудряшов. Сборник примеров и задач по физической химии. - М: Высшая школа, 1991 г.
2) И.И. Климов, А.И. Филько. Сборник примеров и задач по физической и коллоидной химии. – М: Просвещение, 1975 г.
3) В.В. Еремин, С.И. Каргов, И.А. Успенская, Н.Е. Кузьменко, В.В. Лунин. Основы физической химии. Теории и задачи. – М: Экзамен, 2005.