Автор работы: Пользователь скрыл имя, 16 Мая 2013 в 18:19, реферат
Целью курсовой работы является овладение методикой комплексного изучения поставленного вопроса. Научиться логически последовательно, полно рассматривать выбранные объекты. В частности рассмотреть проблематику применения информационных технологий в строительстве. Раскрыть особенности используемых программных продуктов, технологий, физических устройств. Провести выборочный сравнительный анализ некоторых однородных составляющих, например П.О. или аппаратной базы.
ВВЕДЕНИЕ
РАЗДЕЛ 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ, СТРУКТУРА И НАЗНАЧЕНИЕ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ В СТРОИТЕЛЬСТВЕ
1.1 Сети Интернет
1.2 Системы САПР
1.3 Структурированная кабельная система (СКС)
1.4 Система пожарной и охранной сигнализации и оповещения о пожаре
1.5 Охранные системы видеонаблюдения
1.6 Системы противопожарной автоматики и пожаротушения
1.7 Системы контроля доступа
РАЗДЕЛ 2. КОНЦЕПЦИЯ "УМНОГО ДОМА»
2.1 Платформы умного дома
2.2 Компоненты системы управления «Умным домом»
2.2.1 Центральный процессор
2.2.2 Модули расширения
2.2.3 Модули интерфейсов
2.2.4 Панели управления
РАЗДЕЛ 3. ИНТЕРФЕЙСЫ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ
3.1 Общие положения. Способы подключения
3.2 Скоростные интерфейсы LVDS и M-LVDS
ЗАКЛЮЧЕНИЕ
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ
При рассмотрении интерфейсов важным параметром является пропускная способность. Технический прогресс приводит к неуклонному росту объемов передаваемой информации.
Вполне очевидно, что при одинаковом быстродействии приемопередающих цепей и пропускной способности соединительных линий по скорости передачи параллельный интерфейс должен превосходить последовательный. Однако повышение производительности за счет увеличения тактовой частоты передачи данных упирается в волновые свойства соединительных кабелей. В случае параллельного интерфейса начинают сказываться задержки сигналов при их прохождении по линиям кабеля и, что самое неприятное, задержки в разных линиях интерфейса могут быть различными вследствие неидентичности проводов и контактов разъемов. Для надежной передачи данных временные диаграммы обмена строятся с учетом возможного разброса времени прохождения сигналов, что является одним из факторов, сдерживающих рост пропускной способности параллельных интерфейсов.
Для повышения пропускной
способности параллельных интерфейсов
с середины 90-х годов стали
применять двойную
Немаловажен для интерфейса
контроль достоверности передачи данных,
который, увы, имеется далеко не везде.
«Ветераном» контроля является шина
SCSI с ее битом паритета, контроль
паритета применяется и в
Различают три возможных режима обмена устройств:
-Дуплексный,
-Полудуплексный
-Симплексный.
Дуплексный режим позволяет по одному каналу связи одновременно передавать информацию в обоих направлениях. Он может быть асимметричным, если значения пропускной способности в направлениях «туда» и «обратно» существенно различаются, или симметричным. Полудуплексный режим позволяет передавать информацию «туда» и «обратно» поочередно. Симплексный односторонний (во встречном направлении передаются только вспомогательные сигналы интерфейса).
Другим немаловажным параметром
интерфейса является допустимое удаление
соединяемых устройств. Оно ограничивается
как частотными свойствами кабелей,
так и помехозащищенностью
Существенным свойством
является возможность «горячего» подключения/отключения
или замены устройств (Hot Swap), причем
в двух аспектах. Во-первых, это безопасность
переключений «на ходу» как для
самих устройств и их интерфейсных
схем, так и для целостности
хранящихся и передаваемых данных и,
наконец, для человека. Во-вторых, это
возможность использования
3.2 Скоростные интерфейсы LVDS и M-LVDS
Разрядность и быстродействие
контроллеров, процессоров и изделий
на их основе постоянно возрастают.
Производительность всей системы сильно
зависит от скорости обмена данными
между устройствами. В последнее
время для этого всё чаще используют
высокоскоростные интерфейсы LVDS (Low-Voltage
Differential Signaling или дифференциальный
метод передачи с использованием
сигналов низкого уровня) и M-LVDS (Multipoint-LVDS
или многоточечный
На рис. 1 показаны соотношения скорости обмена и допустимого расстояния для разных интерфейсов.
Рисунок 1. Соотношения между скоростью обмена и расстоянием для разных интерфейсов
Из рис. 1 очень хорошо видно, что каждый тип интерфейса имеет свою нишу и предназначен для определенных областей применения. Основное назначение любого последовательного интерфейса - "сворачивание" параллельного кода в скоростной последовательный канал и "разворачивание" последовательного кода в параллельный на приемной стороне.
При расстояниях до 30 м
и скоростях передачи менее 50 Мбит/с
обычно используют интерфейсы стандартов
TIA/EIA-422 (RS-422, multidrop) и TIA/EIA-485 (RS-485, multipoint).
Выходные дифференциальные сигналы
высокого уровня, чувствительные приемники
и работоспособность при
Немаловажным параметром является экономичность каждого типа интерфейса. На рис. 2 показана диаграмма потребления мощности некоторыми интерфейсами и типами логики.
Рисунок 2. Сравнение потребляемой мощности для разных способов передачи и приема данных
Стоит отметить, что LVDS и M-LVDS занимают лидирующие позиции по этому параметру. Вдобавок к этому, только что отмеченные интерфейсы работоспособны при самых низких питающих напряжениях среди показанных на рис. 2.
Благодаря токовому выходу оконечного каскада, потребляемая мощность LVDS и M-LVDS практически не зависит от скорости передачи информации. Эти положительные особенности особенно важны для автономных и портативных устройств. Сигналы низкого уровня и дифференциальная схема передачи существенно облегчают решение проблемы электромагнитной совместимости, что является плюсом рассматриваемых интерфейсов LVDS и M-LVDS.
Полудуплекс позволяет организовать двухсторонний обмен данными, но с разделением во времени, то есть в любой момент времени передача информации может происходить только в одном направлении (отсюда и приставка полу -). При полудуплексе точка-точка обмен происходит только между двумя устройствами. При многоточечном полудуплексе (Multipoint) двухсторонний обмен возможен между любыми устройствами, но только с условием временного разделения потоков информации. В этом случае терминальные резисторы должны быть установлены на обеих сторонах основного канала передачи и приема.
Интерфейсы LVDS (один передатчик - несколько приемников, стандарт TIA/EIA-644) не позволяют напрямую организовать двунаправленный многоточечный обмен, как это возможно с помощью интерфейсов RS-485 (стандарт TIA/EIA-485). Для создания многоточечного полудуплексного режима "Несколько передатчиков - несколько приемников на одной шине" был создан многоточечный интерфейс M-LVDS (стандарт TIA/EIA-899-2001), с помощью которого возможен двухсторонний обмен данными (Half-Duplex Multipoint - многоточечный полудуплекс). M-LVDS - это высокоскоростной экономичный многоточечный RS-485, позволяющий создать сеть, включающую в себя до 32 узлов со скоростью обмена до 500 Мбит/c.
Интерфейсные микросхемы LVDM имеют в два раза более мощный токовый выход. Это необходимо при работе на линию с двумя согласующими резисторами (полудуплексный обмен). Эти приборы были специально разработаны для создания скоростной шинной архитектуры M-LVDS. У фирмы National Semiconductor подобные микросхемы называются BusLVDS или BLVDS. Для LVDM и BusLVDS выходной ток лежит в пределах от 8 до 10 мА. Для M-LVDS - около 11 мА.
3.3 Аудиостандарты
Мультимедийные терминалы,
используемые для видеоконференций,
традиционно предоставляют
На качество звука влияет диапазон передаваемых звуковых частот: ухо человека воспринимает частоты в диапазоне от 20 Hz до 20 kHz. Речевая информация обычно содержится в диапазоне от 100 Hz до 7 kHz. Музыка и другие звуки занимают более широкий диапазон.
3.4 Аудио кодеки
G.711 (обязательный) - алгоритм
кодирования узкополосного
G.722 - алгоритм кодирования широкополосного звука (7 kHz) в канале 48, 56 или 64 Кбит/С; обеспечивает более высокое качество звука, чем G.711, но более требователен к полосе пропускания
G.728 - алгоритм кодирования
узкополосного звука (3.4 kHz) в канале
16 Кбит/С, с использованием
G.723.1 - алгоритм кодирования
узкополосного звука в каналах
5.3 Кбит/С и 6.4 Кбит/С; встроенная
поддержка подавления пауз, обеспечивает
совместимость с системами
G.729 A/B -алгоритм кодирования звука с использованием метода AS-CELP.
Приложение A: упрощенный, более экономный алгоритм, с некоторой потерей качества
Приложение B: подавление пауз и генерация комфортного шума в паузах
3.5 Совместная работа с данными
T.120 - группа стандартов
для совместной работы с
3.6 Стандарты для видеоконференций
H.320 - набор стандартов ITU-T для видеоконференций в сетях с коммутацией каналов. Таких как ISDN, дробные сети T1, E1 и др.
H.321 - рекомендации по организации
видеоконференций с
H.322 - стандарт для видеоконференций в сетях с коммутацией пакетов и гарантированным качеством обслуживания.
H.323 - расширение стандарта
H.320 для видеоконференций в
H.324 - рекомендации по организации
видеоконференцсвязи по
3.7 Стандарты связи и управления
H.221 - структура кадра в каналах 64 ? 1920 Кбит/С (H.320)
H.231 - рекомендации по работе видеосерверного оборудования (MCU) по протоколу H.320
H.242 - управляющие процедуры и протокол для установления связи между терминалами в каналах до 2 Mbps (H.320)
Q.931 - сигнальный протокол для установления и разрыва связи с терминалами (H.323)
RAS - (Registration/Admission/
H.225 - сигнальные протоколы
для установления связи между
терминалами в пакетных сетях
и форматы пакетизации и
H.235 - обеспечение безопасности
в системах H.323: аутентификация участников,
шифрование передаваемой
H.243, H.245 - рекомендации по
работе видеосерверного
H.281 - управление удаленной камерой
H.331 - рекомендации по потоковому видео (streaming)
H.450.x - серия дополнительных служебных протоколов
3.8 Архитектура систем видеоконференцсвязи
Для организации видеоконференций используются следующие устройства:
Кодек (codec) - устройство для преобразования аналоговых (аудио, видео) сигналов в цифровой поток битов и обратного преобразования цифровых сигналов в аналоговые сигналы.
Информация о работе Информационные технологии в строительстве