Контрольная работа по "Экологии"

Автор работы: Пользователь скрыл имя, 17 Февраля 2015 в 11:11, контрольная работа

Краткое описание

1. Химическое загрязнение и возникновение заболеваний у населения
2. Главные направления деятельности в области инженерной защиты окружающей среды.
3. Роль живого вещества в биосфере.

Вложенные файлы: 1 файл

Калын 8 (2).docx

— 50.55 Кб (Скачать файл)
  1. Химическое загрязнение и возникновение заболеваний  у населения

 

  1. Главные направления деятельности  в области инженерной защиты окружающей среды.
  2. Роль живого  вещества  в  биосфере.

 

 

 

1.Расссмотрим химические элементы которые воздействуют пагубно на организм человека. Свинец является одним из наиболее токсичных металлов, включенных в списки приоритетных загрязняющих веществ ряда международных организаций. Свинец поступает в окружающую среду с выбросами автомобильного транспорта работающего на этилированном бензине, выбросами металлургических предприятий, полиграфических предприятий, машиностроительных производств (процессы пайки, рихтовки и др.), производств аккумуляторов и другой свинецсодержашей продукции. В связи с запретом на использование этилированного бензина во многих странах мира, в том числе и в России, в последние годы концентрация свинца в атмосферном воздухе резко уменьшилась.

Воздействие повышенных концентраций свинца приводит к изменению репродуктивной, нервной, сердечно-сосудистой, иммунной и эндокринной систем. Его токсическое действие проявляется в изменениях функционального состояния почек, синтеза гема – основы гемоглобина, процессов окислительного метаболизма и энергетического обмена. Особое значение имеет оценка этого воздействия на здоровье детей, поскольку свинец обладает способностью прохождения через плацентарный барьер и аккумулируется в организме. В условиях дефицита таких минеральных веществ, как железо, кальций и цинк, что в настоящее время наблюдается во многих регионах России, происходит более активное поглощение свинца в организме ребенка.Свинец оказывает негативное влияние на репродуктивное здоровье, особенно мужчин, имеющих производственный контакт с его соединениями. У мужского населения выявлены нарушения сперматогенеза, снижение либидо, уровня тестостерона и других показателей сексуальной функции, обнаруживается бесплодие. Для женщин воздействие свинца проявляется в виде увеличения частоты самопроизвольных абортов, преждевременных родов, снижения массы тела новорожденных, возникновения врожденных пороков у детей и т.д.

Ртуть – один из наиболее токсичных металлов, широко распространен в окружающей среде, обладает способностью к биоаккумуляции и движению по трофическим цепям. В упрощенном виде движение ртути по пищевым цепям может быть представлено следующим образом: вода – донные отложения – биота (бентос, фито-, зоопланктон) – рыбы и птицы, питающиеся рыбой. Особо опасны органические соединения ртути, образующиеся в водных системах и результате процессов биохимического метилирования. В окружающую среду ртуть поступает при добыче и выплавке ртутьсодержащей руды, выплавке цветных металлов из сульфидных руд, извлечении золота из руд, отбеливании целлюлозы, при производстве хлора, каустика, винилхлорида, электрического оборудования (ламп, различных источников тока), приборов измерения и контроля (термометров, манометров), ртутьсодержащих медицинских препаратов, цемента, при применении ртуть содержащих пестицидов, сжигании угля и мазута и т.д. Существенное количество ртути поступает в окружающую среду при сжигании отходов.В России выброс ртути в атмосферный воздух от промышленных предприятий составляет примерно 10 т в год. Это соответствует выбросам ртути промышленностью в других индустриально развитых странах мира. Вблизи хлорщелочных производств образовались зоны интенсивного загрязнения ртутью окружающей среды. В настоящее время по экологическим требованиям некоторые производства закрыты, но проблема остаточного, чрезвычайно высокого уровня загрязнения окружающей среды остается нерешенной. До 20 т ртути ежегодно поступает в окружающую среду при сжигании угля и мазута. Содержание ртути в углях различных месторождений значительно отличается. В среднем оно составляет 17 мкг/т топлива, но в углях Кузбасса доходит до 28 мкг/т. Высоко загрязнение окружающей среды ртутью также в окрестности золотоизвлекающих фабриках, где содержание этого металла превышает ПДК в атмосферном воздухе в 13 раз, в воде – в 2 – 24 раза, в продуктах питания – в 2 раза (Панов В.И., 2007).

При изучении воздействия ртути на организм человека широко используют методы определения ее содержания в крови, моче и волосах. Обычно содержание ртути в 100 мл крови находится в пределах 0,3–1,6 мкг, но у людей, потребляющих большое количество морепродуктов, этот показатель увеличивается до 12,7 мкг.

Профессиональное заболевание, возникшее под воздействием ртути, впервые было описано в XVI в. Классическим примером такого заболевания является «болезнь сумасшедшего шляпника», использовавшего нитрат ртути при изготовлении фетра. В России оценка воздействия ртути на состояние здоровья населения была проведена только в тех населенных пунктах, где расположены источники выбросов этого токсичного металла. Сброс ртути с заводов в водные системы Иркутской области привел к загрязнению донных отложений, воды и рыбы Братского моря.(Романов В.И., Романова Р.Л., 2009).

Распространение кадмия в окружающей среде носит локальный характер. Он поступает в окружающую среду с отходами от металлургических производств, со сточными водами гальванических производств (после кадмирования), других производств, в которых применяются кадмийсодержащие стабилизаторы, пигменты, краски и в результате использования фосфатных удобрений. Кроме того, кадмий присутствует в воздухе крупных городов вследствие истирания шин, эрозии некоторых видов пластмассовых изделий, красок и клеящих материалов.

В России наиболее крупными источниками эмиссии кадмия в атмосферный воздух являются металлургические заводы. Количество выбросов кадмия в воздушный бассейн в настоящее время не превышает 5 т в год. Систематическое определение его содержания в воздухе осуществляется в 50 городах России.

Изменение функции почек при воздействии кадмия было обнаружено исследователями и в других странах мира. В Бельгии (провинция Льеж) отмечены нарушения функции почек (вплоть до летальных исходов) у женщин, проживающих вблизи металлургического завода. Определенные нарушения функции почек были выявлены К.А. Буштуевой, Б.А. Ревичем, Л.Е. Безпалько (1989) и у российских женщин – жительниц Владикавказа.

Канцерогенный эффект кадмия проявляется в увеличении частоты возникновения рака предстательной железы у рабочих кадмиевых производств. Пожизненный канцерогенный риск при воздействии концентрации кадмия 1 мкг/м3 составляет 1,8-10~3 (Ревич Б.А., 2002).

Под термином «диоксины» понимают группу химических соединений, включающую полихлорированные дибензо-n-диоксины (ПХДД) дидибензофураны (ПХДФ). Токсичность 2,3,7,8-тетрахлордибензо-n-диоксина (ТХДД) превосходит токсичность стрихнина, кураре и других высокотоксичных веществ, уступая только ботулиническому токсину. Диоксины относят к супертоксикантам, учитывая их острую токсичность, даже в чрезвычайно малых концентрациях, повсеместность обнаружения в объектах окружающей среды и пищевых продуктах устойчивость при воздействии на них внешних природных факторов (окисления, гидролиза, действия щелочей и кислот и др.), липофильность. Это способствует их сверхаккумуляции и миграции по пищевым цепям. Попадая в организм человека, они увеличивают свою концентрацию в биоте более чем в 104– 105 раз по сравнению с водой.Диоксины/фураны образуются при проведении многих производственных процессов в качестве побочных продуктов. В атмосферный воздух они попадают от процессов сжигания, при обработке металлов, например, агломерации и плавлении, сушке, обжиге, пиролизе, крекинге и в ходе других технологических процессов.

В России применяются следующие нормативы содержания диоксинов в окружающей среде (в пересчете на 2,3,7,8-ТХДД):

  • ПДК в питьевой воде, грунтовых водах и поверхностных водах в местах водозабора (Башкортостан, 1998) – 1 пг/л;

  • ПДК в атмосферном воздухе – 0,5 пг/м3 (по нормам Европейской комиссии выброс не должен превышать 0,1 нг/м3);

  • ПДК в почве – 0,33 нг/кг;

  • уровни допустимого содержания диоксинов в основных группах пищевых продуктов: молоко и молочные продукты (в пересчете на жир) – 5,2 нг ТЭ/кг, рыба (съедобная часть) – 11,0 нг ТЭ/кг (в пересчете на жир – 88,0 нг ТЭ/кг), мясо (съедобная часть) – 0,9 нг ТЭ/кг (в пересчете на жир – 3,3 нг ТЭ/кг).

В других странах рекомендуются следующие нормативы содержания диоксинов:

  • в питьевой воде, пг/л: Канада – 0,01; США – 0,013; Италия – 0,05; Германия – 0,01;

  • в атмосферном воздухе, пг/м3: Нидерланды – 0,024; США – 0,02; Италия – 0,04;

  • в воздухе жилых помещений – 0,3 пг/м3 (Германия);

  • в воздухе рабочей зоны, пг/м3: США – 0,13; Италия – 0,12;

  • в почве, пг/кг: США – 0,03–0,10; страны Северной Европы – менее 5,0.

В Германии применяются дифференцированные нормативы для почв различного назначения (табл. 4).

Таким образом, в России нормативы содержания диоксинов менее жесткие, особенно по питьевой воде, нежели в большинстве стран.

Комитет экспертов ВОЗ в 1990 г. рекомендовал норму допустимой суточной дозы (ДСД) для диоксинов на уровне 10 пг/кг массы тела в пересчете на ТХДД (самый токсичный диоксиновый конгенер). В 1998 г. с учетом новых научных данных ДСД была снижена до 1–4 пг/кг. В итоговом докладе Комитета экспертов ВОЗ указывается, что эта величина временная и конечной целью является снижение допустимого уровня поступления диоксинов в организм человека до нормы менее 1 пг/кг. Европейская Комиссия предложила норматив на уровне не более 2 пг/кг, и некоторые страны, например Великобритания, планируют законодательно утвердить этот новый норматив. Вместе с тем отмечается, что в настоящее время пока не накоплено достаточно данных об индивидуальной чувствительности людей к воздействию диоксинов и о времени выведения из организма каждого из диоксиновых конгенеров. По мнению экспертов, ВОЗ переоценку величины ДСД с учетом новой информации следует проводить один раз в пять лет.

Основной источник поступления диоксинов в организм человека – продукты питания (до 95 %). Остальные 5 % распределяются следующим образом: с воздухом в организм попадает 3,5%, с почвой – 1,3% и с питьевой водой – 0,001 %. Поскольку в основном диоксины содержатся в рыбе и морепродуктах, проблема избыточного их потребления особенно актуальна для жителей прибрежных районов. Например, в США с рыбой в организм людей.По результатам оценки поступления диоксинов в организм 'человека с продуктами питания, проведенной в России, установлено, что в Башкирии основная доля диоксинов переносится с куриным мясом и сливочным маслом (по данным 3.К. Амировой, 1999), а в Иркутской области – с рыбой и молоком (по данным Мамонтовой, 1999). Таким образом, можно заключить, что показатели содержания диоксинов соответствуют таковым в других индустриально развитых районах мира и не превышают существующих в России нормативов.

Бенз(а)пирен является наиболее типичным представителем группы ПАУ. По своим канцерогенным свойствам это вещество относится к группе 2А.

Источником бенз(а)пирена являются энергетические установки, транспорт; он образуется в процессах горения практически всех видов горючих материалов. Среди промышленных предприятий на первом месте по выбросам бенз(а)пирена находятся алюминиевые заводы и производства технического углерода. По примерным оценкам, ежегодно мировой выброс бенз(а)пирена в окружающую среду составляет 5000 т, из них на долю США приходится 1300 т. По подсчетам, в России выброс бенз(а)пирена в атмосферный воздух уменьшился, однако это объясняется не только сокращением производства, но и в немалой степени несовершенством учета его выбросов. Эколого-эпидемиологичсскис исследования, проведенные и различных странах мира, показывают увеличение показателей смертности и заболеваемости населения раком легких в ряде промышленных городов, но при этом всегда производится их стандартизация с учетом фактора курения. Статистически достоверное увеличение заболеваемости раком легких населения Кривого Рога, где расположены крупные сталеплавильные производства, выявлено при концентрации бенз(а)пирена в атмосферном воздухе выше 3 нг/м3.

К летучим органическим соединениям относятся бензол, толуол и ксилолы. Бензол поступает в окружающую среду со сточными водами и газообразными выбросами производств основного органического синтеза, нефтехимических и химико-фармацевтических производств, предприятий по производству пластмасс, взрывчатых веществ, ионообменных смол, лаков, красок и искусственной кожи, он содержится в выхлопных газах автотранспорта и т.д. Бензол быстро испаряется из водоемов в атмосферу и способен к трансформации из почвы в растения. В питьевую воду бензол может попадать в результате загрязнения источника водоснабжения промышленными сточными водами, а также из угольных фильтров, используемых для очистки воды. Ксилолы поступают в питьевую воду из водоисточников, загрязненных сточными водами преимущественно предприятий нефтеперерабатывающей промышленности.

Содержание бензола в атмосферном воздухе колеблется в пределах 3–160 мкг/м3. Более высокие концентрации обнаруживаются в воздухе крупных городов около нефтеперерабатывающих заводов. Выброс бензола в воздушный бассейн России от стационарных источников составляет 13 –24 тыс. т в год. В атмосферном воздухе городов среднегодовая концентрация бензола достигает 90 мкг/м3, а максимальная – 2000 мкг/м3 при максимальной разовой ПДК 300 мкг/м3 и среднесуточной ПДК 100 мкг/м3. ВОЗ не дает рекомендаций относительно нормативного уровня содержания бензола в атмосферном воздухе и приводит только величины канцерогенных потенциалов, необходимых для расчета канцерогенного риска.

В многочисленных эпидемиологических исследованиях установлена причинная связь между воздействием бензола на рабочих и частотой возникновения различных типов лейкозов. Наиболее представительными были ретроспективные когортные исследования, проведенные в Китае. Среди 28460 рабочих, имевших контакт с бензолом на 233 производствах, было обнаружено 30 случаев лейкозов (23 острых и 7 хронических), в то время как в референтной когорте из 28 257 рабочих, занятых в машиностроительной области (83 производства) и не имевших профессионального контакта с бензолом, зарегистрировано всего 4 случая заболевания лейкозом. Смертность от лейкоза в первой группе составила 14 случаев, во второй – 2 случая на 100000 чел./год.

Сероводород – бесцветный газ с характерным запахом. Он присутствует в вулканических газах, а также продуцируется бактериями в процессе распада растительного и животного белка. В значительном количестве сероводород присутствует в воздухе некоторых районов газовых месторождений, в частности Астраханского, а также в воздухе геотермально активных районов. Сероводород, является побочным продуктом процессов коксования серосодержащего угля, рафинирования неочищенных серосодержащих масел, производства сероуглерода, вискозного шелка, крафт-професон при получении древесной массы. В воздушный бассейн городов России сероводород поступает преимущественно с выбросами целлюлозно-бумажных, коксохимических, металлургических, нефте- и газоперерабатывающих, нефтехимических Производств, а также заводов синтетических волокон. Ежегодное поступление сероводорода ранее достигало 30 тыс. т, и в последние годы, в связи с сокращением производства, уменьшилось до 15 тыс. т. Контроль за содержанием сероводорода в атмосферном воздухе осуществляется более чем в 100 городах. В последнее время среднегодовая концентрация сероводорода составляет 2 мкг/м3.

Основной путь поступления сероводорода в организм человека – ингаляционный. В ряде городов России, где расположены целлюлозно-бумажные (Сегежа, Амурск, Байкальск, Братск, Селенгинск, Усть-Илнмск), химические и коксохимические (Березники, Оха, Губаха, Сызрань, Красноярск. Тверь, Магнитогорск, Первоуральск) производства, а также к воздухе вблизи газоперерабатывающего завода в Оренбурге регистрируются значительные концентрации этого газа. Максимальная разовая концентрация сероводорода в атмосферном воздухе этих городов колеблется в пределах 50–100 мкг/м3, т.е. превышает максимальную разовую ПДК в 15 раз.

Информация о работе Контрольная работа по "Экологии"