Автор работы: Пользователь скрыл имя, 11 Декабря 2013 в 21:45, реферат
С ионизирующим излучением и его особенностями человечество познакомилось совсем недавно: в 1895 году немецкий физик В.К. Рентген обнаружил лучи высокой проникающей способности, возникающие при бомбардировке металлов энергетическими электронами (Нобелевская премия, 1901 г.), а в 1896 г. А.А. Беккерель обнаружил естественную радиоактивность солей урана. Вскоре этим явлением заинтересовалась Мария Кюри, молодой химик, полька по происхождению, которая и ввела в обиход слова «радиоактивность». В 1898 году она и ее муж Пьер Кюри обнаружили, что уран после излучения превращается в другие химические элементы. Один из этих элементов супруги назвали полонием в память о родине Марии Кюри, а еще один – радием, поскольку по-латыни это слово обозначает «испускающий лучи».
Введение 3
1.Понятие ионизирующего излучения 4
2. Основные методы обнаружения ИИ 7
3. Дозы излучения и единицы измерения 8
4. Источники ионизирующего излучения 9
5. Средства защиты населения 11
6. Радиационный контроль 12
7. Рекомендации по защите от ионизирующих излучений 13
Заключение 16
Список используемой литературы 17
ИЗЛУЧЕНИЯ В ПРОИЗВОДСТВЕ И ЗАЩИТА ОТ НИХ
Введение 3
1.Понятие ионизирующего излучения 4
2. Основные методы обнаружения ИИ 7
3. Дозы излучения и единицы измерения 8
4. Источники ионизирующего излучения 9
5. Средства защиты населения 11
6. Радиационный контроль 12
7. Рекомендации по защите от ионизирующих излучений 13
Заключение 16
Список используемой литературы 17
Введение
С ионизирующим излучением
и его особенностями
Нет необходимости говорить о том положительном, что внесло в нашу жизнь проникновение в структуру ядра, высвобождение таившихся там сил. Но как всякое сильнодействующее средство, особенно такого масштаба, радиоактивность внесла в среду обитания человека вклад, который к благотворным никак не отнесёшь.
Появилось также число пострадавших от ионизирующей радиации, а сама она начала осознаваться как опасность, способная привести среду обитания человека в состояние, не пригодное для дальнейшего существования.
Причина не только в тех разрушениях, которые производит ионизирующее излучение. Хуже то, что оно не воспринимается нами: ни один из органов чувств человека не предупредит его о приближении или сближением с источником радиации. Человек может находиться в поле смертельно опасного для него излучения и не иметь об этом ни малейшего представления.
Такими опасными элементами,
в которых соотношение числа
протонов и нейтронов превышает
1…1,6. В настоящее время из всех
элементов таблицы Д.И. Менделеева
известно более 1500 изотопов. Из этого
количества изотопов лишь около 300 стабильных
и около 90 являются естественными
радиоактивными элементами.
Таким образом, источниками
ионизирующего излучения
1. Источники излучения и классификация средств защиты
Источники излучений. В современном производстве распространены различные виды излучений: ультрафиолетовое, электромагнитное, инфракрасное и радиоактивное.
В практике животноводства и птицеводства широко применяют облучение животных в период стойлового содержания ультрафиолетовыми, а молодняка (ягнят, цыплят, телят, поросят) инфракрасными лучами. Используются излучения для пастеризации молока, для ускорения развития растений, для уменьшения восприимчивости к болезням и в других случаях.
Под влиянием умеренного ультрафиолетового облучения повышается естественная резистентность организма и продуктивность животных. Инфракрасные лучи в отличие от ультрафиолетовых не обладают заметным химическим действием; они поглощаются тканями, вследствие чего оказывают в основном тепловые воздействия. На этом основано применение инфракрасных лучей для обогрева молодняка в зимнее время. Поглощение инфракрасных лучей кожным покровом — сложный биологический процесс, в котором участвует весь организм с его терморегуляторным аппаратом. Действие инфракрасных лучей вызывает переполнение кровеносных сосудов кровью (в результате нагрева кожи), что усиливает обмен веществ.
Инфракрасное излучение имеет место в горячих цехах, источниками ультрафиолетовых излучений является дуга электросварки, ртутно-кварцевые лампы и другие ультрафиолетовые и облучающие установки, солнце, лазеры.
Источники электромагнитных
излучений — линии
Для облучения семян, растений,
пищевых продуктов, для оценки эффективности
удобрений, роли микроэлементов, плодородия
почвы, качества ремонта и износостойкости
деталей, для исследования механизма
воздействия регуляторов роста
и обмена веществ у животных используют
искусственные радиоактивные
При обработке материалов (пайка, резка, точечная сварка, сверление отверстий в сверхтвердых материалах, дефектоскопия и др.) применяют лазеры, являющиеся источниками лазерных излучений.
Все перечисленные излучения при превышении определенных значений вредны, поэтому необходимо предусматривать соответствующие меры безопасности.
Классификация средств защиты. По характеру применения различают средства коллективной и индивидуальной защиты работающих (ГОСТ 12.4.011—87).
Средства коллективной защиты в зависимости от назначения подразделяют на классы (для защиты от излучений): средства защиты от ионизирующих, инфракрасных, ультрафиолетовых, электромагнитных излучений и излучений оптических, квантовых генераторов, от магнитных и электромагнитных полей.
Из средств индивидуальной защиты представляют интерес изолирующие костюмы, средства защиты органов дыхания (типа масок), глаз, лица, рук, головы, специальная обувь и одежда.
2. Ультрафиолетовое излучение
Общие сведения. Электромагнитное излучение в оптической области, примыкающее со стороны коротких волн к видимому свету и имеющее длины волн в диапазоне 200...400 нм, называют ультрафиолетовым излучением (УФИ). Влияние его на человека оценивают эритемным действием (покраснение кожи, приводящее через 48 ч к ее пигментации — загару). Мощность УФИ для биологических целей характеризуется эритемным потоком, единицей измерения которого является эр (эритемный поток, соответствующий излучению с длиной волны 297 нм и мощностью 1 Вт). Эритемную освещенность (облученность) выражают в эр/м2, а эритемную дозу (экспозицию) — в эр-ч/м2.
При длительном отсутствии УФИ в организме развиваются неблагоприятные явления, называемые «световым голоданием». Поэтому УФИ необходимо для нормальной жизнедеятельности человека. Однако при длительном воздействии больших доз УФИ могут наступить серьезные поражения глаз и кожи. В частности, это может привести к развитию рака кожи, кератитов (воспалений роговицы) и помутнению хрусталика глаз (фотокератита, который характеризуется скрытым периодом от 0,5 до 24 ч).
Для профилактики неблагоприятных последствий, вызванных дефицитом УФИ, используют солнечное излучение, устраивая солярии, инсоляцию помещений, а также применяя искусственные источники УФИ (в соответствии с Рекомендациями по профилактике ультрафиолетовой недостаточности). Рекомендуются дозы УФИ в пределах 0,125...0,75 эритемной дозы (10...60 мэр-ч/м2). В соответствии с Указаниями по проектированию и эксплуатации установок искусственного ультрафиолетового облучения на промышленных предприятиях максимальная облученность ограничивается 7,5 мэр-ч/м2, а максимальная суточная доза — 60 мэр-ч/м2 для УФИ с длиной волны больше 280 нм.
Меры защиты. К средствам коллективной защиты от УФИ относятся различные устройства (оградительные, вентиляционные, автоматического контроля и сигнализации, дистанционного управления), а также знаки безопасности.
Защиту от УФИ осуществляют
различными экранами: физическими (в
виде различных предметов, поглощающих,
рассеивающих или отражающих лучи)
и химическими (химические вещества
и покровные кремы, содержащие ингредиенты,
поглощающие УФИ). Для защиты используют
изготовленную из тканей (поплина
и др.) специальную одежду, а также
очки с защитными стеклами. Полную
защиту от УФИ всех волн обеспечивает
флинтглас (стекло, содержащее окись
свинца) толщиной 2 мм. При устройстве
помещений учитывают, что отражающая
способность различных
3. Инфракрасное излучение
По физической природе инфракрасное излучение (ИФИ) представляет собой поток частичек материи, которые имеют волновые и квантовые свойства. ИФИ охватывает участок спектра с длиной волны от 760 нм до 540 мкм. Относительно человека источником излучения является всякое тело с температурой свыше 36-37°С, и чем больше разность, тем большая интенсивность облучения.
Влияние инфракрасного излучения на организм проявляется в основном тепловым действием. Эффект действия инфракрасных излучений зависит от длины волны, которая обуславливает глубину их проникновения. В связи с этим инфракрасное излучение делится на три группы (согласно классификации Международной комиссии по освещению): А, В и С.
Таблица
Допустимая продолжительность действия на человека тепловой радиации
Тепловое излучение, Вт/м2 |
Продолжительность действия, с |
280-560 (слабая) 560-1050 (воздержанная) 1050-1600 (средняя) 1600-2100 (значительная) 2100-2800 (высокая) 2800-3500 (сильная) Свыше 3500 (очень сильная) |
Неопределенно длительное время 180-300 40-60 20-30 12-24 8-12 2-5 |
Группа А - излучение с длиной волны от 0,76 до 1,4 мкм, В - от 1,4 до 3,0 мкм и С - свыше 3,0 мкм. Инфракрасное излучение группы А больше проникает через кожу и обозначается как коротковолновое инфракрасное излучение, а группы В и С - как длинноволновые. Длинноволновое инфракрасное излучение больше поглощается в эпидермисе, а видимые и более близкие инфракрасные излучения в основном поглощаются кровью в пластах дермы и подкожной жировой клетчатки.
Пропуск, поглощение и рассеяние лучистой энергии зависят как от длины волны, так и от тканей организма. Влияние инфракрасных излучений при поглощении их в разных пластах кожи приводит к нагреванию ее, что обуславливает переполнение кровеносных сосудов кровью и усиление обмена веществ.
Длинноволновые инфракрасные излучения поглощаются слезой и поверхностью роговицы и вызывают тепловое действие. Таким образом, инфракрасные излучения, действуя на глаз, могут вызвать ряд патологических изменений.
К наиболее тяжелым повреждениям приводит коротковолновое инфракрасное излучение. При интенсивном действии этих излучений на незащищенную голову может произойти так называемый солнечный удар.
Тепловой эффект действия
излучения зависит от многих факторов:
спектру, продолжительности и
Интенсивность инфракрасного излучения необходимо измерять на рабочих местах или в рабочей зоне близ источника излучения (табл. ).
На непостоянных рабочих
местах при стабильных источниках целесообразно
замерять интенсивность излучения
на разных расстояниях от источника
излучения с одинаковыми
Интенсивность суммарного теплового излучения измеряется актинометрами, а спектральная интенсивность излучения - инфракрасными спектрометрами ИКС-10; ИКС-12; ПКС-14.
Для измерения малых величин (1400—2100 Вт/м2) интенсивности излучения (от слабо нагретых тел или от сильных источников, размещенных далеко от рабочей зоны) применяют серебряно-висмутовый термостолбик Молля.
Для измерения ИФИ используют
неселективные приемники
Оборудование ТФА-2 предназначенное
для автоматической регистрации
инфракрасного облучения и
Информация о работе Лучистая энергия на производстве. Меры защиты, профилактика