Нетрадиционные возобновляемые источники энергии

Автор работы: Пользователь скрыл имя, 13 Декабря 2012 в 20:28, реферат

Краткое описание

Невозобновляемые источники энергии - это природные запасы веществ и материалов, которые могут быть использованы человеком для производства энергии. Примером могут служить ядерное топливо, уголь, нефть, газ. Энергия невозобновляемых источников, в отличие от возобновляемых, находится в природе в связанном состоянии и высвобождается в результате целенаправленных действий человека.

Содержание

Введение 3
1 Нетрадиционные возобновляемые источники энергии. 4
1.1 Энергия Солнца 5
1.2 Энергия ветра 8
1.3 Геотермальная энергетика 10
1.4 Энергия воды 12
1.5 Биомасса 15
2 Возобновляемая энергетика Беларуси 17
Заключение 20
Список использованной литературы 21

Вложенные файлы: 1 файл

реферат.doc

— 115.50 Кб (Скачать файл)

Но в  обоих вариантах использования  главный недостаток заключается, пожалуй, в очень слабой концентрации геотермальной энергии. Впрочем, в местах образования своеобразных геотермических аномалий, где горячие источники или породы подходят сравнительно близко к поверхности и где при погружении вглубь на каждые 100 м температура повышается на 30-40°С, концентрации геотермальной энергии могут создавать условия и для хозяйственного её использования. В зависимости от температуры воды, пара или пароводяной смеси геотермальные источники подразделяются на низко- и среднетемпературные (с температурой до 130– 150° С) и высокотемпературные (свыше 150°). От температуры во многом зависит характер их использования. Можно утверждать, что геотермальная энергия имеет четыре выгодных отличительных черты.

Во-первых, её запасы практически неисчерпаемы. По оценкам конца 70-х годов до глубины 10 км они составляют такую  величину, которая в 3, 5 тысячи раз превышает запасы традиционных видов минерального топлива.

Во-вторых, геотермальная энергия  довольно широко распространена. Концентрация её связана в основном с поясами активной сейсмической и вулканической деятельности, которые занимают 1/10 площади Земли. В пределах этих поясов можно выделить отдельные наиболее перспективные“геотермальные районы”, примерами которых могут служить Калифорния в США, Новая Зеландия, Япония, Исландия, Камчатка, Северный Кавказ в России. Только в бывшем СССР к началу 90-х годов было открыто около 50 подземных бассейнов горячей воды и пара. В-третьих, использование геотермальной энергии не требует больших издержек, т. к. в данном случае речь идет об уже“готовых к употреблению”, созданных самой природой источниках энергии. Наконец, в-четвертых, геотермальная энергия в экологическом отношении совершенно безвредна и не загрязняет окружающую среду.

Человек издавна использует энергию  внутреннего тепла, но её коммерческое использование началось только в 20-х годах нашего века со строительством первых геоЭС в Италии, а затем и в других странах. К началу 80-х годов в мире действовало около 20 таких станций общей мощностью 1, 5 млн. кВт. Самая крупная из них– станция Гейзерс в США (500 тыс. кВт). Геотермальную энергию используют для выработки электроэнергии, обогрева жилья, теплиц и т. п. В качестве теплоносителя используют сухой пар, перегретую воду или какой-либо теплоноситель с низкой температурой кипения (аммиак, фреон и т. п. ).[3]

    1. Энергия воды

Резкое увеличение цен на топливо, трудности с его получением, истощение топливных ресурсов–все эти видимые признаки энергетического кризиса вызывали в последние годы во многих странах значительный интерес к новым источникам энергии, в том числе к энергии Мирового океана.

Энергия океана давно привлекает к  себе внимание человека. В середине 80-х годов уже действовали первые промышленные установки, а также велись разработки по следующим основным направлениям: использование энергии приливов, прибоя, волн, разности температур воды поверхностных и глубинных слоев океана, течений и т. д.

Веками люди размышляли над причиной морских приливов и отливов. Сегодня  мы достоверно знаем, что могучее природное явление–ритмичное движение морских вод вызывают силы притяжения Луны и Солнца. Приливные волны таят в себе огромный энергетический потенциал– 3 млрд. кВт. Растет интерес специалистов к приливным колебаниям уровня океана у побережий материков. Энергию приливов на протяжении веков человек использовал для приведения в действие мельниц и лесопилок. Но с появлением парового двигателя она была предана забвению до середины 60-х годов, когда были пущены первые ПЭС во Франции и СССР.

Приливная энергия постоянна. Благодаря  этому, количество вырабатываемой на приливных электростанциях (ПЭС) электроэнергии всегда может быть заранее известно, в отличие от обычных ГЭС, на которых количество получаемой энергии зависит от режима реки, связанного не только с климатическими особенностями территории, по которой она протекает, но и с погодными условиями. При определении технических возможностей большую роль играют такие факторы, как характер береговой линии, форма и рельеф дна, глубина воды, морские течения и ветер. Опыт показывает, что для эффективной работы ПЭС высота приливной волны должна быть не менее 5 м. Чаще всего такие условия возникают в мелких и узких заливах или устьях рек, впадающих в моря и океаны. Но подобных мест на всём земном шаре не так уж много: по разным источникам 25, 30 или 40.

Считается, что наибольшими запасами приливной энергии обладает Атлантический океан. В его северо-западной части, на границе США и Канады, находится залив Фанди, представляющий собой внутреннюю суженную часть более открытого залива Мен. Этот залив знаменит самыми высокими в мире приливами, достигающими 18 м. Очень высоки приливы и у берегов Канадского арктического архипелага. В северо-восточной части Атлантики примерно такие же приливы наблюдаются в проливе Ла-Манш у берегов Франции, в Бристольском заливе и Ирландском море у берегов Англии и Ирландии. Велики также запасы приливной энергии в Тихом океане. В его северо-западной части особенно выделяется Охотское море, где в Тугурском и Пенжинском заливах высота приливной волны составляет 9-13 м.

В пределах Северного Ледовитого океана по запасам приливной энергии  выделяются Белое море, в Мезенской  губе которого приливы имеют высоту до 10 м, и Баренцево море у берегов  Кольского полуострова (до 7 м). В Индийском океане запасы такой энергии значительно меньше. В качестве перспективных для строительства ПЭС здесь обычно называются залив Кач Аравийского моря (Индия) и северо-западное побережье Австралии.

Несмотря на такие, казалось бы весьма благоприятные, природные предпосылки, строительство ПЭС пока имеет довольно ограниченные масштабы. По существу реально можно говорить лишь о более или менее крупной промышленной ПЭС“Ранс”во Франции, об опытной Кислогубской ПЭС на Кольском полуострове(Россия) и канадско-американской ПЭС в заливе Фанди.

При сооружении ПЭС необходимо всесторонне  оценивать их экологическое воздействие на окружающую среду. Оно довольно велико. В районах сооружения крупных ПЭС существенно изменяется высота приливов, нарушается водный баланс в акватории станции, что может серьёзно сказаться на рыбном хозяйстве, разведении устриц, мидий и пр.

К числу энергетических ресурсов Мирового океана относят также энергию волн и температурного градиента. Энергия ветровых волн суммарно оценивается в 2, 7 млрд. кВт в год. Опыты показали, что ее следует использовать не у берега, куда волны приходят ослабленными, а в открытом море или в прибрежной зоне шельфа. В некоторых шельфовых акваториях волновая энергия достигает значительной концентрации: в США и Японии–около 40 кВт на метр волнового фронта, а на западном побережье Великобритании–даже 80 кВт на 1 метр. Использование этой энергии, хотя и в местных масштабах, уже начато в Великобритании и Японии. Британские острова имеют очень длинную береговую линию, во многих местах море остается бурным в течение длительного времени. По оценкам ученых, за счет энергии морских волн в английских территориальных водах можно было бы получить мощность до 120 ГВт, что вдвое превышает мощность всех электростанций, принадлежащих Британскому центральному электроэнергетическому управлению.

Впервые идею использования энергии  разности температур поверхностных и глубинных слоев воды Мирового океана предложил французский ученый д'Арсонвиль в 1881 году, но первые разработки начались лишь в 1973 году. Энергию разности температур различных слоев Мирового океана оценивают в 20-40 трлн. кВт. Из них практически могут быть использованы лишь 4 трлн. кВт. [1, 3]

    1. Биомасса

Понятие “биомасса”относят к веществам  растительного или животного  происхождения, а также отходам, получаемым в результате их переработки. В энергетических целях энергию биомассы используют двояко: путем непосредственного сжигания или путем переработки в топливо (спирт или биогаз). Есть два основных направления получения топлива из биомассы: с помощью термохимических процессов или путем биотехнологической переработки. Опыт показывает, что наиболее перспективна биотехнологическая переработка органического вещества. В середине 80-х годов в разных странах действовали промышленные установки по производству топлива из биомассы. Наиболее широкое распространение получило производство спирта. Одно из наиболее перспективных направлений энергетического использования биомассы–производство из неё биогаза, состоящего на 50-80% из метана и на 20-50% из углекислоты. Его теплотворная способность– 5-6 тыс. ккал/м3 . Наиболее эффективно производство биогаза из навоза. Из одной тонны его можно получить 10-12 куб. м метана. А, например, переработка 100 млн. тонн такого отхода полеводства, как солома злаковых культур, может дать около 20 млрд. куб. м метана. В хлопкосеющих районах ежегодно остается 8-9 млн. тонн стеблей хлопчатника, из которых можно получить до 2 млрд. куб. м метана. Для тех же целей возможна утилизация ботвы культурных растений , трав и др.

Биогаз можно конвертировать в  тепловую и электрическую энергию, использовать в двигателях внутреннего сгорания для получения синтезгаза и искусственного бензина.

Производство биогаза из органических отходов дает возможность решать одновременно три задачи: энергетическую, агрохимическую (получение удобрений типа нитрофоски) и экологическую.

Установки по производству биогаза  размещают, как правило, в районе крупных городов, центров переработки сельскохозяйственного сырья.

  1. возобновляемая энергетика Беларуси

Республика Беларусь относится  к категории стран, которые не обладают значительными собственными топливно-энергетическими ресурсами (ТЭР). Собственные ТЭР: нефть, газ, дрова, торф, гидроресурсы и биомасса. Обеспеченность Pеспублики собственными энергоресурсами находится на уровне 15-17% потребности Республики в ТЭР.

В Беларуси кроме возобновляемых источников энергии практически отсутствуют другие источники. Таким образом, доля возобновляемых источников энергии составляет до 80% в структуре собственных ТЭР.

   В Беларуси действует   закон «О нетрадиционных и  возобновляемых источниках энергии», который является гарантом поддержки  развития альтернативной и возобновляемой энергетики и позволяет преодолеть многие проблемы и барьеры в реализации увеличения доли возобновляемых источников энергии в структуре ТЭР до 25% и более.

Согласно постановления Совета Министров Республики Беларусь от 24.04.1997 №400 в редакции от 28.02.2002 №288 «О развитии малой и нетрадиционной энергетики» (1) разработана концепция развития малой и нетрадиционной энергетики в Республике Беларусь; (2) гарантируется подключение к сетям энергосистемы республики объектов малой и нетрадиционной энергетики, принадлежащих субъектам хозяйствования независимо от форм собственности, а также оплата поставляемой этими объектами энергии; (3) разработан порядок формирования тарифов на электроэнергию, покупаемую энергосистемой от объектов малой и нетрадиционной энергетики. Так, постановление №91 Министерства экономики РБ от 31.05.2006 г. устанавливает повышенный тариф на покупку электроэнергии, выработанной с помощью ВИЭ, с коэффициентом 1,3, что составляет ориентировочно 10 – 11 евроцентов (а для мини-ТЭЦ на природном газе – 
0,85).

Потенциал энергии ветра оценивается  в экономии (замещении) топлива в 1,9 – 2,0 млн.т усл. топл./год [1]. Ветроэнергетический потенциал оценен в 220 млрд. кВт ч. В настоящее время ветроэнергетика в Беларуси развивается очень медленными темпами, так как инвесторы в РБ сталкиваются со значительными трудностями, а региональным 
энергосистемам развитие ветроэнергетики не очень выгодно. Сегодня в Беларуси действует только две серийные ветроэнергетические установки. Работают ветроустановки мощностью 270 кВт и мощностью 660 кВт в пос. Дружная Мядельского района. Подготовлен архитектурный проект строительства самой крупной в Беларуси ветроустановки мощностью 1,2 МВт в д.Грабники (РУП «Гродноэнерго»). Предусматривается, что в 2010 году должны быть введены в эксплуатацию ветроэнергетические установки суммарной мощностью 3,7 МВт, к 2012-му — 5,2 МВт, к 2014 году — 15 МВт. В настоящее время разрабатывается 2 проекта создания совместных предприятий с региональными энергосистемами для строительства парков ВЭС ориентировочной суммарной мощностью по 20 – 30 МВт. Для эффективной реализации проектов в области ветроэнергетики необходимо проводить реальные замеры с целью определения ветроэнергетических ресурсов; наладить выпуск оборудования, соответствующего климатическим условиям Беларуси; накапливать опыт проектирования, внедрения и эксплуатации ветротехники.

Потенциал энергии солнца в экономии топлива для горячего водоснабжения оценивается в 1,25 – 1,75 млн.т усл. топл./год; для производства электроэнергии – в 1,0- 1,25 млн.т усл. топл./год . В настоящее время промышленного значения не имеет. Имеется только несколько экспериментальных установок. В ближайшем будущем не планируется широкое использование энергии солнца в Беларуси.

Основными направлениями в производстве энергии из биомассы являются: (1) отходы растениеводства; (2) биогаз из отходов животноводства; (3) дрова и древесные отходы; (4) фитомасса и (5) коммунальные отходы.

Экономия топлива в результате использования энергии малых  рек составляет 0,11 – 0,15млн.т. услл. топл./год . Потенциальная мощность всех водотоков Беларуси – 850 МВт, в том числе экономически целесообразным является использование 250 МВт – именно до такого уровня намерены довести общую мощность малых гидроэлектростанций в Беларуси к 2020 году. В настоящее время на балансе энергосистемы Беларуси функционируют гидроэлектростанции установленной мощностью около 20 МВт. В ближайшие годы будут введены Гродненская ГЭС мощностью 17 МВт на реке Неман, Полоцкая ГЭС (23 МВт) на реке Западная Двина, гидроэлектростанция на Днепре (5 МВт) и другие мини-ГЭС на Морочи, Случи, Птичи, Сервечи, Ислочи и других малых реках.

В 2008 году в Беларуси введены в  эксплуатацию первые два биогазовых комплекса - на племптицезаводе "Белорусский" в г. Заславль (мощность 340 кВт - первая очередь) и в селекционно-гибридном центре "Западный" Брестского района (мощность 520 кВт). Как правило, проблематика возобновляемых источников энергии не освещается в публичных дискуссиях. Информация об уже реализованных проектах представлена только на профессиональных / тематических сайтах. Информация о существующих технологиях использования возобновляемых источников энергии отсутствует. В последнее время интерес к возобновляемым источникам энергии у общественных организаций возрос и основное направление деятельности общественных организаций в этом направлении - реализации проектов, направленных на использование возобновляемой энергетики для личных нужд (ОО «ЭкоДом», Минское городское отделение Международного общественного объединения экологов, МОО «Экопроект» (как составная часть климатической политики и адаптации к изменению климата)).[5]

 

Заключение

Человеку издавна необходима энергия. Сейчас необходимое для нормального существования количество энергии постоянно растет, и источники традиционной энергии истощаются. Поэтому так важно развитие нетрадиционной энергетики. И хотя это не так просто, как кажется, но данная отрасль развивается, ведутся поиски альтернативных источников. Человечество должно не забывать и о окружающей среде, использовать безвредную в экологическом смысле энергию. И нетрадиционная энергетика поможет найти этому решение.

Информация о работе Нетрадиционные возобновляемые источники энергии