Популяция синатропных видов

Автор работы: Пользователь скрыл имя, 19 Апреля 2012 в 18:02, реферат

Краткое описание

Основной закон экологии ниш можно перефразировать так: каждый находится там, где он хочет и может находиться. Таким образом, для того, чтобы достичь желаемого эффекта в отпугивании, необходимо либо лишить объект привлекательности для животных либо перекрыть им доступ к объекту.
Чтобы понять, чем привлекательно для птиц соседство человека, рассмотрим проблему этого соседства в несколько в более широком аспекте. Города и, в особенности, современные мегаполисы, где проблема взаимоотношений нежелательных птиц и человека особенно остра, появились в эволюционном масштабе времени совсем недавно. Таким образом, здесь мы можем говорить лишь об экологической (а не эволюционной) шкале преобразований, то есть, об изменении привычек и образа жизни, а не о коренной перестройке организации вида, которая обычно связана с генетическими (эволюционными) преобразованиями. Иными словами, наши виды-урбанисты, такие как голуби, воробьи, вороны и др. лишь привычками отличаются от своих, обитавших отдельно от человека предков – у них просто не было времени для более глубоких, эволюционных изменений. ажно понять следующее. Как птицы осваивают для жизни новые места, как они приспосабливаются к ним и каковы перспективы таких приспособлений у разных птиц?

Вложенные файлы: 1 файл

Реферат по экологии.doc

— 170.50 Кб (Скачать файл)

При наиболее благоприятном для популяции стечении обстоятельств новый уровень численности соответствует поддерживающей емкости среды или, иначе говоря, кривая роста превращается из J-образной в S-образную (рис. 4.6, б). Однако исчерпание пищевых ресурсов может привести также к появлению и других трудностей для популяции, например к развитию болезней. Тогда численность снижается до уровня значительно более низкого, чем поддерживающая емкость среды (рис. 4.6, а), а в пределе популяция может даже быть обречена на вымирание.

Рис. 4.6. Варианты завершения роста популяции по J-образной модели: а – для дафнии на питательной среде; б – преобразование в S-образный вид

Для S-образной модели в случаях отставания действия регулирующих механизмов по каким-либо причинам, например, в связи с затратами времени на воспроизводство или по иным причинам временное запаздывание учитывает дифференциальное уравнение

N/dτ = rNK – rN 2(τ– T)/K, (4.3)

где T – время, необходимое системе для реакции на внешнее воздействие.

Вычитаемое в правой части уравнения, содержащее N2, позволяет предсказать момент выхода системы из состояния равновесия в случаях, когда время запаздывания относительно велико по сравнению с временем релаксации (1/r) системы. В итоге при увеличении в системе времени запаздывания вместо асимптотического приближения к состоянию равновесия происходит колебание численности организмов относительно теоретической S-образной кривой. В случаях, когда пищевые ресурсы ограничены, популяция не достигает устойчивого равновесия, ибо численность одного поколения зависит от численности другого, что отражается на скорости репродукции и приводит к хищничеству и каннибализму. Колебания численности популяции, для которой характерны большие значения r, малое время воспроизводства τ и несложный регулирующий механизм, могут быть весьма значительными.

Описанные модели роста популяции и дифференциальные уравнения предполагают, что все организмы сходны между собой, имеют равную вероятность погибнуть и равную способность к размножению, так что скорость роста популяции в экспоненциальной фазе зависит только от ее численности и не ограничена условиями среды, которые остаются постоянными. Они точно описывают процессы роста и взаимодействия особей в большинстве искусственных и некоторых естественных популяциях. «Идеальность» всех экологических факторов в исходных условиях предопределила то, что рассматриваемые модели называют идеальными.

Для природных популяций принятые допущения чаще всего неверны. В естественных условиях J-и S-образные модели роста популяции преимущественно можно наблюдать в случаях, когда тех или иных животных вселяют или они сами распространяются в новые для них районы. Тем не менее теоретические модели роста позволяют лучше понять процессы, происходящие в естественных условиях. Большинство принципов, используемых для моделирования популяций животных, применимо также и для моделирования популяций растений.

Следует отметить, что при любой модели (как J-, так и S-образной) вначале характерна фаза экспоненциального роста численности популяции (рис. 4.5, 4.6, б). Поэтому при сочетании благоприятных (оптимальных) значений всех факторов среды возникает «популяционный взрыв», т. е. особо быстрый рост популяции того или иного вида.

Миграция или расселение, так же как и внезапное снижение скорости размножения, могут способствовать уменьшению численности популяции. Расселение может быть связано с определенной стадией жизненного цикла, например с образованием семян.

Применительно к условиям реальной природной среды принято использовать понятия биотический потенциал – совокупность всех экологических факторов, способствующих увеличению численности популяции, или видовая способность к размножению при отсутствии ограничений со стороны среды, а также сопротивление среды – сочетание факторов, ограничивающих рост (лимитирующих факторов).

Любые изменения популяции есть результат нарушения равновесия между ее биотическим потенциалом и сопротивлением окружающей среды.

4.4.3. Колебания численности популяции

По достижении заключительной фазы роста размеры популяции продолжают колебаться от поколения к поколению вокруг некоторой более или менее постоянной величины. При этом численность одних видов изменяется нерегулярно с большой амплитудой колебаний (насекомые-вредители, сорняки), колебания численности других (например, мелких млекопитающих) имеют относительно постоянный период, а в популяциях третьих видов численность колеблется от года к году незначительно (долгоживущие крупные позвоночные и древесные растения).

В природе в основном встречаются три вида кривых изменения численности популяции: относительно стабильный, скачкообразный и циклический (рис. 4.7).

Виды, у которых численность из года в год находится на уровне поддерживающей емкости среды, имеют достаточно стабильные популяции (кривая 1). Такое постоянство характерно для многих видов дикой природы и встречается, например, в нетронутых тропических влажных лесах, где среднегодовое количество осадков и температура изменяются день ото дня и из года в год крайне мало.

У других видов колебания численности популяций носят правильный циклический характер (кривая 2). Хорошо знакомы примеры сезонных колебаний численности. Тучи комаров; поля, заросшие цветами; леса, полные птиц, – все это характерно для теплого времени года в средней полосе и сходит практически на нет зимой.

Широко известен пример циклических колебаний численности леммингов (северных травоядных мышевидных грызунов) в Северной Америке и Скандинавии. Раз в четыре года плотность их популяций становится столь высокой, что они начинают мигрировать со своих перенаселенных местообитаний; при этом массово гибнут в фиордах и тонут в реках, что до настоящего времени не имеет достаточного объяснения. Еще с глубокой древности известны циклические нашествия странствующей африканской саранчи на Евразию.

Ряд видов, таких, как енот, в основном имеют достаточно стабильные популяции, однако время от времени их численность резко возрастает (подскакивает) до наивысшего значения, а затем резко падает до некоторого низкого, но относительно стабильного уровня. Эти виды относят к популяциям со скачкообразным ростом численности (кривая 3).

Рис. 4.7. Основные кривые изменения численности популяций различных видов: 1 – стабильный; 2 – цикличный; 3 – скачкообразный

Внезапное увеличение численности происходит при временном повышении емкости среды для данной популяции и может быть связано с улучшением климатических условий (факторов) и питания или резким уменьшением численности хищников (включая охотников). После превышения новой, более высокой емкости среды в популяции возрастает смертность и ее размеры резко сокращаются.

На протяжении истории в разных странах не раз наблюдались случаи краха популяций человека, например, в Ирландии в 1845 г., когда в результате заражения грибком погиб весь урожай картофеля. Поскольку рацион питания ирландцев сильно зависел от картофеля, к 1900 г. половина восьмимиллионного населения Ирландии умерла от голода или эмигрировала в другие страны.

Тем не менее численность человечества на Земле в целом и во многих регионах в частности продолжает расти. Люди путем технологических, социальных и культурных перемен неоднократно увеличивали для себя поддерживающую емкость планеты (рис. 4.8). По сути, они смогли изменить свою экологическую нишу за счет увеличения производства продуктов питания, борьбы с болезнями и использования больших количеств энергетических и материальных ресурсов, чтобы сделать обычно непригодные для жизни районы Земли обитаемыми.

Рис. 4.8. Увеличение поддерживающей емкости среды для популяции человека (по Т. Миллеру), масштаб по осям условный

В правой части рис. 4.8 приведены возможные сценарии дальнейшего изменения фактической численности людей на планете в случае превышения поддерживающей емкости биосферы.

4.5. Популяции синантропных видов

В предыдущих разделах рассмотрены природные популяции, находящиеся в естественных местообитаниях. Однако вследствие хозяйственной деятельности человека образуются природно-антропогенные популяции, тесно связанные, например, с сельским хозяйством. Многие насекомые, мышевидные грызуны и прочие виды находят здесь экологическую нишу, адаптируя свою структуру и динамику численности к той или иной системе хозяйствования.

С эволюцией человеческого общества и образованием стабильных поселений также возникли с и н а н т р о п н ы е в и д ы, популяции которых обитают в жилищах и в местах скопления отходов жизнедеятельности людей. Они могут быть «вредителями», «паразитами», переносчиками возбудителей болезней, выступая в качестве опасных экологических (биотических) факторов для человека.

В пещеру древнего человека перешли на жительство многие насекомые, осваивая скопления различных отходов. Однако человечество постепенно развивало культуру быта и улучшало санитарно-гигиеническую обстановку в своих поселениях, одновременно создавая разнообразные методы уничтожения нежелательных «спутников». В то же время насекомых отпугивала сама обстановка города, с течением времени все больше отличавшаяся от привычной природной среды. В результате большинство насекомых отступило, но тараканы, комнатные мухи, некоторые виды муравьев и другие преодолели все биологические преграды и стали «хозяйничать» в городской и поселковой среде.

Мухи активны в квартирах днем, а ночью их сменяют тараканы – представители крупного одноименного отряда насекомых. Синантропные тараканы – теплолюбивые насекомые, происходящие из тропических лесов Южной Азии. В северных районах они живут только в отапливаемых помещениях. Понижение температуры ниже +5 °C для тараканов смертельно, поэтому их не бывает в дачных домиках в средней полосе России, а в природных условиях тараканы встречаются в Крыму, на юге Дальнего Востока и в южных районах Средней Азии. Но даже в теплом помещении они не будут жить при отсутствии источника воды.

Тараканы распространяются по городу или поселку чаще всего при перевозках продуктов или комнатных вещей, а в теплое время года могут переходить из дома в дом самостоятельно.

Вместе с мухами и тараканами в домах поселяются муравьи. В деревянных домах в сельской местности живут муравьи-древоточцы, обитающие и в окрестных лесах. В городах стал обычным мелкий рыжеватый муравей, в естественных условиях встречающийся только в тропиках.

Все комнатные насекомые, посещающие различные отбросы, переносят на теле возбудителей опасных заболеваний и создают антисанитарные условия для людей.

 

Ссылка на материалы из сети Интернет:

http://fictionbook.ru/author/natalya_evgenevna_nikolayikina/yekologiya/

http://www.volnakz.com/himiya-biologiya/pticysinantropy/

Ссылка на статью из журнала общественной биологии:

Вахрушев А.А., Раутиан А.С. Исторический подход к экологии сообществ// Журн. общ. биол. 1993. Т.54. №.5. С.532-553.

 

 

1

 



Информация о работе Популяция синатропных видов